Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials

物候学 核(代数) 加性模型 水准点(测量) 核方法 计算机科学 计算 支持向量机 基因组学 最佳线性无偏预测 高斯分布 生物 线性模型 机器学习 计算生物学 人工智能 基因组 算法 数学 遗传学 地理 选择(遗传算法) 大地测量学 量子力学 物理 组合数学 基因
作者
Germano Costa‐Neto,Roberto Fritsche‐Neto,José Crossa
出处
期刊:Heredity [Springer Nature]
卷期号:126 (1): 92-106 被引量:111
标识
DOI:10.1038/s41437-020-00353-1
摘要

Abstract Modern whole-genome prediction (WGP) frameworks that focus on multi-environment trials (MET) integrate large-scale genomics, phenomics, and envirotyping data. However, the more complex the statistical model, the longer the computational processing times, which do not always result in accuracy gains. We investigated the use of new kernel methods and modeling structures involving genomics and nongenomic sources of variation in two MET maize data sets. Five WGP models were considered, advancing in complexity from a main-effect additive model (A) to more complex structures, including dominance deviations (D), genotype × environment interaction (AE and DE), and the reaction-norm model using environmental covariables (W) and their interaction with A and D (AW + DW). A combination of those models built with three different kernel methods, Gaussian kernel (GK), Deep kernel (DK), and the benchmark genomic best linear-unbiased predictor (GBLUP/GB), was tested under three prediction scenarios: newly developed hybrids (CV1), sparse MET conditions (CV2), and new environments (CV0). GK and DK outperformed GB in prediction accuracy and reduction of computation time (~up to 20%) under all model–kernel scenarios. GK was more efficient in capturing the variation due to A + AE and D + DE effects and translated it into accuracy gains (~up to 85% compared with GB). DK provided more consistent predictions, even for more complex structures such as W + AW + DW. Our results suggest that DK and GK are more efficient in translating model complexity into accuracy, and more suitable for including dominance and reaction-norm effects in a biologically accurate and faster way.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钙钛矿要发光完成签到,获得积分10
1秒前
zzc发布了新的文献求助10
1秒前
fly_7应助H_bing采纳,获得10
2秒前
2秒前
在水一方应助高大的易蓉采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
jnngshan应助科研通管家采纳,获得10
3秒前
嗯哼应助科研通管家采纳,获得20
3秒前
桐桐应助Silver采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
Chem应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
嗯哼应助科研通管家采纳,获得20
3秒前
wanci应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Ting应助科研通管家采纳,获得10
3秒前
3秒前
光天画戟的把完成签到 ,获得积分10
5秒前
上官若男应助笨笨采纳,获得10
5秒前
6秒前
与狼共舞完成签到,获得积分10
6秒前
过河小卒完成签到 ,获得积分10
6秒前
Hello应助贪玩果汁采纳,获得10
6秒前
9秒前
10秒前
吕大本事发布了新的文献求助10
11秒前
调皮金连发布了新的文献求助10
12秒前
wy应助默默南晴采纳,获得10
13秒前
LRX发布了新的文献求助10
13秒前
13秒前
宗嘻嘻发布了新的文献求助10
14秒前
高海龙完成签到 ,获得积分10
16秒前
SciGPT应助科研熊大采纳,获得10
16秒前
笨笨发布了新的文献求助10
18秒前
小鸟芋圆露露由于求助违规,被管理员扣积分20
20秒前
LRX完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310041
求助须知:如何正确求助?哪些是违规求助? 2943138
关于积分的说明 8512742
捐赠科研通 2618304
什么是DOI,文献DOI怎么找? 1431024
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649540