Understanding Li-Ion Battery Thermal Runaway through Small, Slow and in Situ Sensing Nail Penetration

热失控 钉子(扣件) 渗透(战争) 材料科学 穿透深度 电池(电) 热的 复合材料 光学 工程类 冶金 物理 热力学 运筹学 功率(物理)
作者
Shan Huang,Guangsheng Zhang
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (2): 430-430
标识
DOI:10.1149/ma2020-012430mtgabs
摘要

Thermal runaway is a critical safety challenge for Li-ion batteries, yet it is still not well understood [ 1 ]. Here we propose understanding thermal runaway behaviors and mechanisms through small, slow and in situ sensing (3S) nail penetration. As schematically shown in Figure 1, the 3S nail penetration is different from conventional nail penetration testing [ 2 ] in three aspects. First, the nail is small in diameter, reducing influences of nail on thermal runaway behaviors [ 3 ]. Second, the nail penetrates Li-ion cell very slowly, enabling precise control of penetration depth or even single layer internal short circuit. Third, a micro temperature sensor is embedded in the nail tip as inspired by previous reports [ 4-7 ], providing in situ sensing of temperature at internal short circuit spot. Voltage between the nail and Li-ion cell tabs is also monitored as inspired by a previous report [ 8 ], allowing detection of nail tip location. Figure 2 shows comparison of temperature results for 3 Ah Li-ion pouch cells using 3S nail penetration and conventional nail penetration. It can be seen that 3S nail penetration provides much more details of thermal runaway than conventional nail penetration. Most interestingly, three internal temperature peaks were observed during a period of more than 100 seconds, with the third peak over 500 °C, but the temperature quickly decreased after these peaks. Thermal runaway did not occur until the fourth temperature peak which reached 800 °C. Based on further investigation, the initial internal temperature peaks occurred when the nail tip reached aluminum foil current collector and caused internal short circuit between aluminum foil and anode. The quick decrease of internal temperature after each peak could be attributed to stop of internal short circuit current. The stop of internal short circuit current could be further attributed to rupture of aluminum foil by nail penetration and significant increase of contact resistance between the nail and aluminum foil. These detailed understanding could help development of fundamentally safer Li-ion batteries. References: [1] V. Ruiz, A. Pfrang, JRC exploratory research: Safer Li-ion batteries by preventing thermal propagation, Workshop report: summary & outcomes, JRC Petten, Netherlands, 8-9 March 2018, (2018). [2] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, L. Boon-Brett, A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles, Renewable and Sustainable Energy Reviews, 81 (2018) 1427-1452. [3] W. Zhao, G. Luo, C.-Y. Wang, Modeling Nail Penetration Process in Large-Format Li-Ion Cells, Journal of The Electrochemical Society, 162(1) (2015) A207-A217. [4] T.D. Hatchard, S. Trussler, J.R. Dahn, Building a “smart nail” for penetration tests on Li-ion cells, Journal of Power Sources, 247 (2014) 821-823. [5] P. Poramapojana, Experimental Investigation of Internal Short Circuits in Lithium-ion Batteries, PhD Dissertation, The Pennsylvania State University, https://etda.libraries.psu.edu/catalog/26683 , (2015). [6] T.R. Tanim, M. Garg, C.D. Rahn, An Intelligent Nail Design for Lithium Ion Battery Penetration Test, Proceedings of the ASME 2016 Power and Energy Conference, June 26-30, 2016, Charlotte, North Carolina, USA, (2016). [7] D.P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M.D. Michiel, A. Rack, G. Hinds, D.J.L. Brett, P.R. Shearing, Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells, Journal of The Electrochemical Society, 164(13) (2017) A3285-A3291. [8] Y. Ishihara, A New Method for Safety Test of Internal Short Circuit, 18th Annual Advanced Automotive Battery Conference, 4–7 June 2018, San Diego, CA, USA, (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰糖葫卢完成签到,获得积分10
1秒前
荼柒完成签到,获得积分10
2秒前
2秒前
lunar发布了新的文献求助10
2秒前
3秒前
老王发布了新的文献求助10
3秒前
忘忧草发布了新的文献求助10
3秒前
JamesPei应助研友_8DAv0L采纳,获得10
3秒前
彭于晏应助迅猛2002采纳,获得10
3秒前
4秒前
健壮的怜烟应助Wangying采纳,获得20
4秒前
Attendre完成签到 ,获得积分10
5秒前
5秒前
橙子发布了新的文献求助10
5秒前
ronnie完成签到,获得积分10
6秒前
6秒前
6秒前
小二郎应助柏代桃采纳,获得10
6秒前
6秒前
jun完成签到,获得积分10
7秒前
7秒前
CodeCraft应助ClaudiaY0采纳,获得30
8秒前
Mmxn发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
酷炫翠桃应助活泼的不可采纳,获得10
9秒前
10秒前
10秒前
zhangling发布了新的文献求助10
11秒前
shai_ga发布了新的文献求助10
11秒前
十年完成签到 ,获得积分10
11秒前
琉璃完成签到,获得积分10
11秒前
12秒前
13秒前
lsp完成签到,获得积分10
14秒前
大模型应助天空下的回忆采纳,获得10
14秒前
14秒前
Yi完成签到,获得积分10
14秒前
CWCSG发布了新的文献求助30
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053