已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Understanding Li-Ion Battery Thermal Runaway through Small, Slow and in Situ Sensing Nail Penetration

热失控 钉子(扣件) 渗透(战争) 材料科学 穿透深度 电池(电) 热的 复合材料 光学 工程类 冶金 物理 热力学 运筹学 功率(物理)
作者
Shan Huang,Guangsheng Zhang
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (2): 430-430
标识
DOI:10.1149/ma2020-012430mtgabs
摘要

Thermal runaway is a critical safety challenge for Li-ion batteries, yet it is still not well understood [ 1 ]. Here we propose understanding thermal runaway behaviors and mechanisms through small, slow and in situ sensing (3S) nail penetration. As schematically shown in Figure 1, the 3S nail penetration is different from conventional nail penetration testing [ 2 ] in three aspects. First, the nail is small in diameter, reducing influences of nail on thermal runaway behaviors [ 3 ]. Second, the nail penetrates Li-ion cell very slowly, enabling precise control of penetration depth or even single layer internal short circuit. Third, a micro temperature sensor is embedded in the nail tip as inspired by previous reports [ 4-7 ], providing in situ sensing of temperature at internal short circuit spot. Voltage between the nail and Li-ion cell tabs is also monitored as inspired by a previous report [ 8 ], allowing detection of nail tip location. Figure 2 shows comparison of temperature results for 3 Ah Li-ion pouch cells using 3S nail penetration and conventional nail penetration. It can be seen that 3S nail penetration provides much more details of thermal runaway than conventional nail penetration. Most interestingly, three internal temperature peaks were observed during a period of more than 100 seconds, with the third peak over 500 °C, but the temperature quickly decreased after these peaks. Thermal runaway did not occur until the fourth temperature peak which reached 800 °C. Based on further investigation, the initial internal temperature peaks occurred when the nail tip reached aluminum foil current collector and caused internal short circuit between aluminum foil and anode. The quick decrease of internal temperature after each peak could be attributed to stop of internal short circuit current. The stop of internal short circuit current could be further attributed to rupture of aluminum foil by nail penetration and significant increase of contact resistance between the nail and aluminum foil. These detailed understanding could help development of fundamentally safer Li-ion batteries. References: [1] V. Ruiz, A. Pfrang, JRC exploratory research: Safer Li-ion batteries by preventing thermal propagation, Workshop report: summary & outcomes, JRC Petten, Netherlands, 8-9 March 2018, (2018). [2] V. Ruiz, A. Pfrang, A. Kriston, N. Omar, P. Van den Bossche, L. Boon-Brett, A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles, Renewable and Sustainable Energy Reviews, 81 (2018) 1427-1452. [3] W. Zhao, G. Luo, C.-Y. Wang, Modeling Nail Penetration Process in Large-Format Li-Ion Cells, Journal of The Electrochemical Society, 162(1) (2015) A207-A217. [4] T.D. Hatchard, S. Trussler, J.R. Dahn, Building a “smart nail” for penetration tests on Li-ion cells, Journal of Power Sources, 247 (2014) 821-823. [5] P. Poramapojana, Experimental Investigation of Internal Short Circuits in Lithium-ion Batteries, PhD Dissertation, The Pennsylvania State University, https://etda.libraries.psu.edu/catalog/26683 , (2015). [6] T.R. Tanim, M. Garg, C.D. Rahn, An Intelligent Nail Design for Lithium Ion Battery Penetration Test, Proceedings of the ASME 2016 Power and Energy Conference, June 26-30, 2016, Charlotte, North Carolina, USA, (2016). [7] D.P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M.D. Michiel, A. Rack, G. Hinds, D.J.L. Brett, P.R. Shearing, Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells, Journal of The Electrochemical Society, 164(13) (2017) A3285-A3291. [8] Y. Ishihara, A New Method for Safety Test of Internal Short Circuit, 18th Annual Advanced Automotive Battery Conference, 4–7 June 2018, San Diego, CA, USA, (2018). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含糊的文涛完成签到,获得积分10
3秒前
4秒前
顺利秋灵发布了新的文献求助10
4秒前
飞源发布了新的文献求助10
5秒前
Hello应助性感母蟑螂采纳,获得10
5秒前
淡漠完成签到 ,获得积分10
5秒前
Calyn完成签到 ,获得积分0
5秒前
无花果应助tmrrr采纳,获得10
6秒前
Perion完成签到 ,获得积分10
6秒前
疯狂喵完成签到 ,获得积分10
7秒前
Donger完成签到 ,获得积分10
7秒前
菠cai发布了新的文献求助10
8秒前
vuuv完成签到,获得积分10
10秒前
Sssssss完成签到 ,获得积分10
11秒前
11秒前
呜呼完成签到,获得积分10
12秒前
牛牛完成签到 ,获得积分10
12秒前
wcy完成签到 ,获得积分10
15秒前
李春鸿完成签到,获得积分10
15秒前
Jy关注了科研通微信公众号
15秒前
fdwonder完成签到,获得积分10
16秒前
背后的傥完成签到,获得积分10
18秒前
文明8完成签到,获得积分10
21秒前
菠cai完成签到,获得积分10
22秒前
桐桐应助zzzzz采纳,获得10
24秒前
路冰完成签到,获得积分10
26秒前
Hello应助凶凶采纳,获得10
27秒前
Yasong完成签到 ,获得积分10
27秒前
LZJ完成签到,获得积分10
28秒前
辣椒完成签到 ,获得积分10
30秒前
ananan完成签到 ,获得积分10
35秒前
35秒前
蔡从安发布了新的文献求助10
36秒前
37秒前
38秒前
黑大侠完成签到 ,获得积分10
38秒前
鲨鱼辣椒完成签到 ,获得积分10
39秒前
MissingParadise完成签到 ,获得积分10
41秒前
zzzzz发布了新的文献求助10
41秒前
cAMP发布了新的文献求助10
42秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980687
求助须知:如何正确求助?哪些是违规求助? 3524513
关于积分的说明 11221855
捐赠科研通 3261938
什么是DOI,文献DOI怎么找? 1800999
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807342