Pre-dispersive near-infrared light sensing in non-destructively classifying the brix of intact pineapples

近红外光谱 折射计 糖度 吸光度 材料科学 光学 遥感 分析化学(期刊) 化学 光电子学 色谱法 食品科学 折射率 地质学 物理
作者
Kim Seng Chia,Mohamad Nur Hakim Jam,Zeanne Gan,Nurlaila Ismail
出处
期刊:Journal of Food Science and Technology [Springer Nature]
卷期号:57 (12): 4533-4540 被引量:7
标识
DOI:10.1007/s13197-020-04492-5
摘要

Exported fresh intact pineapples must fulfill the minimum internal quality requirement of 12 degree brix. Even though near-infrared (NIR) spectroscopic approaches are promising to non-destructively and rapidly assess the internal quality of intact pineapples, these approaches involve expensive and complex NIR spectroscopic instrumentation. Thus, this research evaluates the performance of a proposed pre-dispersive NIR light sensing approach in non-destructively classifying the Brix of pineapples using K-fold cross-validation, holdout validation, and sensitive analysis. First, the proposed pre-dispersive NIR sensing device that consisted of a light sensing element and five NIR light emitting diodes with peak wavelengths of 780, 850, 870, 910, and 940 nm, respectively, was developed. After that, the diffuse reflectance NIR light of intact pineapples was non-destructively acquired using the developed NIR sensing device before their Brix values were conventionally measured using a digital refractometer. Next, an artificial neural network (ANN) was trained and optimized to classify the Brix values of pineapples using the acquired NIR light. The results of the sensitivity analysis showed that either one wavelength that was near to the water absorbance or chlorophyll band was redundant in the classification. The performance of the trained ANN was tested using new pineapples with the optimal classification accuracy of 80.56%. This indicates that the proposed pre-dispersive NIR light sensing approach coupled with the ANN is promising to be an alternative to non-destructively classifying the internal quality of fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDD完成签到,获得积分10
1秒前
港岛妹妹完成签到,获得积分0
1秒前
CipherSage应助姜小猪采纳,获得10
1秒前
1秒前
852应助自觉紫安采纳,获得10
2秒前
尘闲发布了新的文献求助10
2秒前
qwqe发布了新的文献求助10
3秒前
3秒前
3秒前
木子发布了新的文献求助10
4秒前
小马甲应助文存采纳,获得10
4秒前
4秒前
俭朴天蓝发布了新的文献求助10
4秒前
高越发布了新的文献求助10
4秒前
5秒前
5秒前
奋斗完成签到 ,获得积分10
5秒前
szh123发布了新的文献求助10
5秒前
失眠映真完成签到,获得积分10
6秒前
友好的储发布了新的文献求助10
6秒前
蟹蟹发布了新的文献求助10
7秒前
7秒前
啊慧发布了新的文献求助10
7秒前
7秒前
Orange应助kkkkkoi采纳,获得10
7秒前
花见月开完成签到,获得积分10
8秒前
小马发布了新的文献求助10
8秒前
9秒前
sims发布了新的文献求助10
10秒前
kkdkg完成签到,获得积分20
10秒前
djsj应助m李采纳,获得10
10秒前
大模型应助wenhuan采纳,获得10
11秒前
胡小月发布了新的文献求助10
11秒前
赘婿应助尘闲采纳,获得10
11秒前
12秒前
12秒前
12秒前
英俊的铭应助如果我沉默采纳,获得10
12秒前
12秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481440
求助须知:如何正确求助?哪些是违规求助? 3071576
关于积分的说明 9122712
捐赠科研通 2763320
什么是DOI,文献DOI怎么找? 1516389
邀请新用户注册赠送积分活动 701550
科研通“疑难数据库(出版商)”最低求助积分说明 700413