Soil moisture response to water infiltration in a 1-D slope soil column model

渗透(HVAC) 含水量 孔隙水压力 山崩 地下水 土壤科学 水文学(农业) 土壤水分 地质学 饱和(图论) 环境科学 水分 岩土工程 材料科学 复合材料 物理 组合数学 热力学 数学
作者
Fawu Wang,Zili Dai,I. Takahashi,Yuta Tanida
出处
期刊:Engineering Geology [Elsevier]
卷期号:267: 105482-105482 被引量:10
标识
DOI:10.1016/j.enggeo.2020.105482
摘要

Rainfall is a major triggering factor of shallow landslides in mountainous and steep terrain all over the world. The main mechanism of shallow landslides is that the water infiltration may generate pore-water pressure resulting in a decrease of the shear strength of the soil in the potential sliding zone. Therefore, a better knowledge regarding the soil moisture responding to the water infiltration is the key to effectively predict the occurrence of the rainfall-induced shallow landslides. In this work, a 1-D slope soil column model is developed to investigate the soil moisture response to the water infiltration into a slope, for the purpose to predict shallow landslides. During the artificial rainfall, the moisture content at different soil depths and pore water pressure at the bottom of the soil column are monitored. The downward process of the wetting front and the rising of the groundwater level are recorded. It is found that the increase of the degree of saturation Sr can be separated to two steps: 1) Sr increases from the initial state to a critical value due to the water infiltration, and then keeps constant for a long period; 2) Sr increases again until the fully saturated state is reached due to the rising of the groundwater level. Using the monitoring data, the downward infiltration rate of the water and the upward rising rate of the groundwater level are calculated. The results show that both rates are proportional to the artificial rainfall intensity. Based on the monitoring data, an empirical model is proposed to predict the distribution and temporal evolution of soil moisture content in the soil. The model parameters are calibrated and the performance of the empirical model is evaluated. The results show that the proposed model can predict the distribution and evolution of soil moisture at different rainfall intensities, and show the possibility to predict shallow landslides by means of the soil moisture monitoring in field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜盒子发布了新的文献求助10
刚刚
刚刚
大意的安白完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
学术蟑螂完成签到,获得积分10
1秒前
1秒前
1秒前
兴奋冷松完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
饭小心完成签到,获得积分20
2秒前
luodd完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
4秒前
小吴发布了新的文献求助10
4秒前
甜甜灵槐发布了新的文献求助10
5秒前
yyang发布了新的文献求助10
5秒前
5秒前
超级水壶发布了新的文献求助10
5秒前
manan发布了新的文献求助10
5秒前
5秒前
fxy完成签到 ,获得积分10
6秒前
爆米花应助大意的安白采纳,获得10
6秒前
wen完成签到,获得积分10
6秒前
Lucas应助徐慕源采纳,获得10
6秒前
袁国惠发布了新的文献求助10
6秒前
加油发布了新的文献求助10
6秒前
天天快乐应助韭菜盒子采纳,获得10
6秒前
7秒前
圣晟胜发布了新的文献求助10
7秒前
耍酷的白梦完成签到,获得积分10
7秒前
斯文的若颜完成签到,获得积分10
8秒前
8秒前
Firefly完成签到,获得积分10
8秒前
zjh完成签到,获得积分20
8秒前
科研通AI5应助陆离采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740