Emotion Classification Using Single-Channel EEG

脑电图 人工智能 心理学 计算机科学 脑-机接口 模式识别(心理学) 语音识别 情绪分类 大脑活动与冥想 头戴式耳机 认知心理学 神经科学 电信
作者
R. Bhargavi,Har Shobhit Dayal,Kanishk Sankpal
出处
期刊:2019 International Conference on Computing, Power and Communication Technologies (GUCON) 被引量:1
链接
摘要

The discovery of EEG signal in 1929 by the German psychiatrist Hans Berger changed the way we understand the structure and functioning of brain.The interaction between a machine and computer is increasing day by day and the need of the hour is to develop a Brain Computer Interface(BCI) which can help the humanity.EEG Emotion recognition system can be used to predict the emotions felt by disabled people.Studies have found that corticolimbic Theta electroencephalographic (EEG) oscillation is responsible for the emotions that one feels. Alpha, Theta, Beta and Delta sub-bands of EEG play a major role in brains emotion processing. The goal of this study is to identify emotions from an EEG data collected from a Single Channel EEG headset.13 subjects of varying age participated in the EEG experiment which were shown videos that helped in evoking three emotional states: neutral, calm and fear. After each video the participants were asked to rate the video on the basis of SAM Model and Valence-Arousal scale.The method used is based on Digital Signal Processing Techniques in order to remove arte-facts,clubbed with machine learning in order to design a system for predicting emotions using EEG signal.Stationary Wavelet Transform (SWT) with haar wavelet at level 6 decomposition with Garrote Thresholding is used to clean the signal and remove the noise. Higuchi Fractal Dimension is also calculated and added as one of the features and is found to have increase the classification accuracy due to its ability to identify the patterns from the data.Experimental results show that EEG based emotion classification can predict emotions with an average of 76% in case of pure EEG signal and 85% in case of EEG signals with Valence-Arousal scale using Recurrent Neural Networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skepticalsnails完成签到,获得积分10
1秒前
开朗满天完成签到 ,获得积分10
1秒前
还在考虑完成签到,获得积分10
3秒前
3秒前
修辛完成签到 ,获得积分10
4秒前
4秒前
温柔梦松完成签到 ,获得积分10
4秒前
甜蜜的指甲油完成签到,获得积分10
4秒前
小高的茯苓糕完成签到,获得积分10
4秒前
云海老完成签到,获得积分10
5秒前
anna1992完成签到,获得积分10
6秒前
hussarzcz完成签到,获得积分10
6秒前
6秒前
yongkun发布了新的文献求助10
6秒前
杜宇完成签到 ,获得积分10
6秒前
郭政飞完成签到,获得积分10
6秒前
自信晓博完成签到,获得积分10
7秒前
浅香千雪完成签到,获得积分10
7秒前
duonicola发布了新的文献求助10
8秒前
乐乐乐乐乐乐应助绛羽镜采纳,获得10
8秒前
桔子完成签到,获得积分10
8秒前
眼睛大的寄真完成签到 ,获得积分10
9秒前
畅快的冰淇淋完成签到,获得积分10
9秒前
香蕉觅云应助坚强的严青采纳,获得10
9秒前
小瑀完成签到,获得积分10
9秒前
开心完成签到,获得积分10
10秒前
10秒前
YUU完成签到,获得积分10
10秒前
1107任务报告完成签到,获得积分10
11秒前
爆米花应助郭政飞采纳,获得10
11秒前
绿绿完成签到,获得积分10
11秒前
海晨完成签到,获得积分10
12秒前
Meyako完成签到 ,获得积分10
12秒前
13秒前
15秒前
蔷薇完成签到,获得积分10
15秒前
zmx完成签到 ,获得积分10
15秒前
高歌猛进完成签到,获得积分10
16秒前
111222完成签到,获得积分10
16秒前
化工人发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565