Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks

高光谱成像 遥感 激光雷达 随机森林 支持向量机 泰加语 卷积神经网络 环境科学 树(集合论) 森林资源清查 苏格兰松 计算机科学 人工智能 森林经营 地理 林业 农林复合经营 数学 松属 数学分析 植物 生物
作者
Janne Mäyrä,Sarita Keski‐Saari,Sonja Kivinen,Topi Tanhuanpää,Pekka Hurskainen,Peter Kullberg,Laura Poikolainen,Arto Viinikka,Sakari Tuominen,Timo Kumpula,Petteri Vihervaara
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112322-112322 被引量:164
标识
DOI:10.1016/j.rse.2021.112322
摘要

During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxs发布了新的文献求助10
刚刚
慕青应助坚强小虾米采纳,获得10
刚刚
沉默海完成签到,获得积分10
刚刚
Steven完成签到 ,获得积分10
刚刚
科研通AI6应助山雷采纳,获得10
1秒前
桐桐应助小张在努力采纳,获得10
1秒前
酷波er应助sci大户采纳,获得10
2秒前
ding应助DrLee采纳,获得10
2秒前
2秒前
SciGPT应助刘丰铭采纳,获得10
2秒前
qitengzhu发布了新的文献求助10
2秒前
刘霆勋发布了新的文献求助10
2秒前
英姑应助SY采纳,获得10
3秒前
小张同学发布了新的文献求助10
4秒前
5秒前
司藤完成签到 ,获得积分10
5秒前
隐形曼青应助wanduzi采纳,获得10
6秒前
Hello应助一杯甜酒采纳,获得10
6秒前
6秒前
忧伤的觅珍完成签到,获得积分10
8秒前
8秒前
李hy发布了新的文献求助10
9秒前
研友_VZG7GZ应助刘霆勋采纳,获得10
9秒前
科研通AI6应助李俊杰采纳,获得30
10秒前
10秒前
秘密发布了新的文献求助10
10秒前
10秒前
10秒前
情怀应助好名字采纳,获得10
11秒前
11秒前
xiaolv应助能干可乐采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
gngxnh完成签到 ,获得积分10
12秒前
酷酷问薇发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
jm完成签到,获得积分10
13秒前
张紫嫣完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809