Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks

高光谱成像 遥感 激光雷达 随机森林 支持向量机 泰加语 卷积神经网络 环境科学 树(集合论) 森林资源清查 苏格兰松 计算机科学 人工智能 森林经营 地理 林业 农林复合经营 数学 松属 数学分析 植物 生物
作者
Janne Mäyrä,Sarita Keski‐Saari,Sonja Kivinen,Topi Tanhuanpää,Pekka Hurskainen,Peter Kullberg,Laura Poikolainen,Arto Viinikka,Sakari Tuominen,Timo Kumpula,Petteri Vihervaara
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112322-112322 被引量:164
标识
DOI:10.1016/j.rse.2021.112322
摘要

During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每天都想吃东西完成签到 ,获得积分10
刚刚
化学发布了新的文献求助20
1秒前
风清扬发布了新的文献求助10
2秒前
浮游应助purkid采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
yolo完成签到,获得积分10
3秒前
思源应助顺心的凌萱采纳,获得10
3秒前
3秒前
NexusExplorer应助chenfeng2163采纳,获得10
4秒前
4秒前
aging123完成签到,获得积分20
4秒前
4秒前
华清如发布了新的文献求助10
4秒前
博雅守望者完成签到,获得积分10
4秒前
JasVe完成签到 ,获得积分10
5秒前
清雨桩完成签到,获得积分10
7秒前
李天恩完成签到,获得积分10
8秒前
黄天完成签到 ,获得积分10
9秒前
闪闪的沛槐完成签到,获得积分10
9秒前
Ava应助farewell采纳,获得10
10秒前
柔弱云朵完成签到,获得积分10
10秒前
浪漫反派发布了新的文献求助10
11秒前
小杭76应助糟糕的面包采纳,获得10
12秒前
核桃完成签到,获得积分10
12秒前
quzhenzxxx完成签到 ,获得积分10
12秒前
打打应助lipu采纳,获得10
14秒前
潇潇完成签到 ,获得积分0
15秒前
齐朕完成签到,获得积分10
16秒前
Young_kristine完成签到,获得积分10
17秒前
111完成签到 ,获得积分10
17秒前
奔流的河发布了新的文献求助10
19秒前
20秒前
Young完成签到 ,获得积分10
20秒前
ericssong完成签到,获得积分10
22秒前
标致凝莲完成签到 ,获得积分10
22秒前
核桃发布了新的文献求助50
22秒前
SciGPT应助浪漫反派采纳,获得10
24秒前
Zhusy发布了新的文献求助10
24秒前
25秒前
NexusExplorer应助化学采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719