Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks

高光谱成像 遥感 激光雷达 随机森林 支持向量机 泰加语 卷积神经网络 环境科学 树(集合论) 森林资源清查 苏格兰松 计算机科学 人工智能 森林经营 地理 林业 农林复合经营 数学 松属 数学分析 植物 生物
作者
Janne Mäyrä,Sarita Keski‐Saari,Sonja Kivinen,Topi Tanhuanpää,Pekka Hurskainen,Peter Kullberg,Laura Poikolainen,Arto Viinikka,Sakari Tuominen,Timo Kumpula,Petteri Vihervaara
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112322-112322 被引量:164
标识
DOI:10.1016/j.rse.2021.112322
摘要

During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孤独丹秋发布了新的文献求助10
2秒前
wsg完成签到,获得积分10
3秒前
闪闪寒荷完成签到 ,获得积分10
3秒前
科研通AI2S应助研友_nPxRRn采纳,获得10
4秒前
精明松思完成签到,获得积分20
6秒前
居居子完成签到,获得积分10
7秒前
7秒前
科研达人完成签到,获得积分10
8秒前
无辜的蜗牛完成签到 ,获得积分10
8秒前
辛勤香岚完成签到,获得积分10
9秒前
Vicky完成签到 ,获得积分10
10秒前
Fxxkme发布了新的文献求助10
10秒前
平淡的寄风完成签到,获得积分10
12秒前
公西翠萱完成签到,获得积分10
14秒前
WYJie完成签到,获得积分10
17秒前
挪威的森林完成签到,获得积分10
17秒前
addi111完成签到,获得积分10
17秒前
justsayit完成签到 ,获得积分10
18秒前
炙热的宛完成签到,获得积分10
18秒前
仿真小学生完成签到,获得积分10
18秒前
19秒前
诚心代芙完成签到 ,获得积分10
19秒前
简单的平松完成签到,获得积分10
19秒前
碧蓝雁风完成签到 ,获得积分10
20秒前
慕青应助顺心的水云采纳,获得10
21秒前
李L完成签到,获得积分10
22秒前
竹得风完成签到 ,获得积分10
23秒前
24秒前
景平完成签到,获得积分10
24秒前
尽快看看完成签到 ,获得积分10
24秒前
neverever完成签到,获得积分10
25秒前
和谐的夏岚完成签到 ,获得积分10
26秒前
meehan完成签到,获得积分10
26秒前
27秒前
是容许鸭发布了新的文献求助10
27秒前
yinxx完成签到,获得积分10
28秒前
114555完成签到,获得积分10
28秒前
29秒前
烟花应助傻死一只橙子采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769049
捐赠科研通 2440325
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792