Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks

高光谱成像 遥感 激光雷达 随机森林 支持向量机 泰加语 卷积神经网络 环境科学 树(集合论) 森林资源清查 苏格兰松 计算机科学 人工智能 森林经营 地理 林业 农林复合经营 数学 松属 数学分析 植物 生物
作者
Janne Mäyrä,Sarita Keski‐Saari,Sonja Kivinen,Topi Tanhuanpää,Pekka Hurskainen,Peter Kullberg,Laura Poikolainen,Arto Viinikka,Sakari Tuominen,Timo Kumpula,Petteri Vihervaara
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:256: 112322-112322 被引量:164
标识
DOI:10.1016/j.rse.2021.112322
摘要

During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧满天完成签到 ,获得积分10
1秒前
1秒前
Hello应助wangqing采纳,获得10
2秒前
bkagyin应助cdj采纳,获得10
2秒前
zino完成签到,获得积分10
4秒前
领导范儿应助喜悦的斓采纳,获得10
6秒前
zzz完成签到 ,获得积分10
7秒前
独特的凝云完成签到 ,获得积分10
9秒前
大块完成签到 ,获得积分10
9秒前
Tempo完成签到,获得积分10
11秒前
林希希发布了新的文献求助10
12秒前
zbclzf完成签到,获得积分10
12秒前
DentistRui完成签到,获得积分10
13秒前
六月666发布了新的文献求助80
13秒前
13秒前
16秒前
17秒前
jscr发布了新的文献求助10
18秒前
车剑锋完成签到,获得积分10
19秒前
hao253完成签到,获得积分10
20秒前
虬江学者发布了新的文献求助10
21秒前
21秒前
不管啦发布了新的文献求助10
21秒前
江鹿柒柒完成签到,获得积分10
22秒前
23秒前
23秒前
fighting完成签到,获得积分10
24秒前
24秒前
乘风完成签到,获得积分10
25秒前
奶黄包完成签到 ,获得积分10
26秒前
27秒前
27秒前
虬江学者完成签到,获得积分10
27秒前
吕小布完成签到,获得积分10
28秒前
wangqing发布了新的文献求助10
28秒前
29秒前
田様应助轻松的凡英采纳,获得10
30秒前
31秒前
乘风发布了新的文献求助20
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965870
求助须知:如何正确求助?哪些是违规求助? 3511230
关于积分的说明 11156929
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793144
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278