Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks

高光谱成像 遥感 激光雷达 随机森林 支持向量机 泰加语 卷积神经网络 环境科学 树(集合论) 森林资源清查 苏格兰松 计算机科学 人工智能 森林经营 地理 林业 农林复合经营 数学 松属 数学分析 生物 植物
作者
Janne Mäyrä,Sarita Keski‐Saari,Sonja Kivinen,Topi Tanhuanpää,Pekka Hurskainen,Peter Kullberg,Laura Poikolainen,Arto Viinikka,Sakari Tuominen,Timo Kumpula,Petteri Vihervaara
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112322-112322 被引量:164
标识
DOI:10.1016/j.rse.2021.112322
摘要

During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhi完成签到,获得积分10
刚刚
彭于晏应助科研通管家采纳,获得20
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
摇摇晃晃完成签到 ,获得积分10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
贪玩手链应助科研通管家采纳,获得20
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
李健的小迷弟应助liyi采纳,获得10
1秒前
华仔应助科研通管家采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得20
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
FFFFFFF应助yatou5651采纳,获得10
3秒前
3秒前
3秒前
Agernon应助正直冰露采纳,获得10
3秒前
3秒前
茕穹完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助30
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740