Simulated annealing velocity analysis: Automating the picking process

虚假关系 算法 马克西玛 计算机科学 模拟退火 分段 正常时差 过程(计算) 分段线性函数 跳跃式监视 最大值和最小值 数学优化 数学 数学分析 人工智能 偏移量(计算机科学) 艺术 机器学习 表演艺术 程序设计语言 艺术史 操作系统
作者
Danilo R. Velis
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (2): V119-V130 被引量:8
标识
DOI:10.1190/geo2020-0323.1
摘要

We have developed an automated method for velocity picking that allows us to estimate appropriate velocity functions for the normal moveout correction of common-depth-point (CDP) gathers, valid for either hyperbolic or nonhyperbolic trajectories. In the hyperbolic velocity analysis case, the process involves the simultaneous search (picking) of a certain number of time-velocity pairs in which the semblance, or any other coherence measure, is high. In the nonhyperbolic velocity analysis case, a third parameter, usually associated with the layering and/or the anisotropy, is added to the searching process. Our technique relies on a simple but effective search of a piecewise linear curve defined by a certain number of nodes in a 2D or 3D space that follows the semblance maxima. The search is carried out efficiently using a constrained very fast simulated annealing algorithm. The constraints consist of static and dynamic bounding restrictions, which are viewed as a means to incorporate prior information about the picking process. This allows us to avoid those maxima that correspond to multiples, spurious events, and other meaningless events. Results using synthetic and field data indicate that our technique permits automatically obtaining accurate and consistent velocity picks that lead to flattened events, in agreement with the manual picks. As an algorithm, the method is very flexible for accommodating additional constraints (e.g., preselected events) and depends on a limited number of parameters. These parameters are easily tuned according to data requirements, available prior information, and the user’s needs. The computational costs are relatively low, ranging from a fraction of a second to, at most, 1–2 s per CDP gather, using a standard PC with a single processor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
henglu完成签到,获得积分10
1秒前
hrrypeet完成签到,获得积分10
1秒前
任任任发布了新的文献求助10
1秒前
彭于晏应助小鱼采纳,获得10
1秒前
1秒前
franklin_fsz完成签到,获得积分0
3秒前
酷波er应助kekekek采纳,获得10
3秒前
眼睛大的飞飞完成签到 ,获得积分10
3秒前
niko发布了新的文献求助10
4秒前
LoooOK完成签到,获得积分10
4秒前
丘比特应助LMH采纳,获得10
4秒前
Lucas应助shuo采纳,获得10
4秒前
大个应助zhz采纳,获得10
4秒前
机长发布了新的文献求助10
4秒前
wave发布了新的文献求助10
4秒前
生动的战斗机完成签到,获得积分10
5秒前
叫我根硕发布了新的文献求助10
5秒前
今后应助亲出来挨打采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
Jasper应助钮黎昕采纳,获得10
6秒前
独特冰安完成签到,获得积分10
6秒前
Krystal完成签到,获得积分10
7秒前
111发布了新的文献求助100
7秒前
微笑远锋发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
CipherSage应助呼噜采纳,获得10
8秒前
JamesPei应助云墨采纳,获得10
8秒前
干豇豆发布了新的文献求助10
9秒前
脑洞疼应助咔咔采纳,获得10
9秒前
学术界的小喽啰完成签到,获得积分10
9秒前
10秒前
网友小根完成签到,获得积分10
10秒前
11秒前
11秒前
赵yy应助xxdefaj采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513104
求助须知:如何正确求助?哪些是违规求助? 4607490
关于积分的说明 14505275
捐赠科研通 4542963
什么是DOI,文献DOI怎么找? 2489319
邀请新用户注册赠送积分活动 1471334
关于科研通互助平台的介绍 1443309