Simulated annealing velocity analysis: Automating the picking process

虚假关系 算法 马克西玛 计算机科学 模拟退火 分段 正常时差 过程(计算) 分段线性函数 跳跃式监视 最大值和最小值 数学优化 数学 数学分析 人工智能 偏移量(计算机科学) 程序设计语言 表演艺术 艺术 机器学习 操作系统 艺术史
作者
Danilo R. Velis
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (2): V119-V130 被引量:8
标识
DOI:10.1190/geo2020-0323.1
摘要

We have developed an automated method for velocity picking that allows us to estimate appropriate velocity functions for the normal moveout correction of common-depth-point (CDP) gathers, valid for either hyperbolic or nonhyperbolic trajectories. In the hyperbolic velocity analysis case, the process involves the simultaneous search (picking) of a certain number of time-velocity pairs in which the semblance, or any other coherence measure, is high. In the nonhyperbolic velocity analysis case, a third parameter, usually associated with the layering and/or the anisotropy, is added to the searching process. Our technique relies on a simple but effective search of a piecewise linear curve defined by a certain number of nodes in a 2D or 3D space that follows the semblance maxima. The search is carried out efficiently using a constrained very fast simulated annealing algorithm. The constraints consist of static and dynamic bounding restrictions, which are viewed as a means to incorporate prior information about the picking process. This allows us to avoid those maxima that correspond to multiples, spurious events, and other meaningless events. Results using synthetic and field data indicate that our technique permits automatically obtaining accurate and consistent velocity picks that lead to flattened events, in agreement with the manual picks. As an algorithm, the method is very flexible for accommodating additional constraints (e.g., preselected events) and depends on a limited number of parameters. These parameters are easily tuned according to data requirements, available prior information, and the user’s needs. The computational costs are relatively low, ranging from a fraction of a second to, at most, 1–2 s per CDP gather, using a standard PC with a single processor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性半凡完成签到,获得积分10
1秒前
hetao完成签到,获得积分10
2秒前
Ether完成签到,获得积分10
2秒前
Hayden完成签到,获得积分10
3秒前
桐桐应助沉静的乘风采纳,获得10
3秒前
闪闪星星完成签到,获得积分10
3秒前
呆萌幼晴完成签到,获得积分10
4秒前
DrW完成签到,获得积分10
5秒前
请叫我风吹麦浪应助lllll采纳,获得10
6秒前
独孤一草完成签到,获得积分10
6秒前
Jayway完成签到,获得积分10
6秒前
Andy发布了新的文献求助10
8秒前
kkfly完成签到,获得积分10
8秒前
dryyu发布了新的文献求助20
9秒前
暂时贫穷的研究生完成签到,获得积分20
9秒前
XH完成签到,获得积分10
10秒前
阔达不凡完成签到,获得积分10
11秒前
小二郎应助帅气蓝采纳,获得10
12秒前
明理小凝完成签到 ,获得积分10
12秒前
yili完成签到,获得积分10
13秒前
优雅的化蛹完成签到,获得积分10
13秒前
14秒前
14秒前
1117完成签到 ,获得积分10
15秒前
有有完成签到 ,获得积分10
16秒前
QY完成签到 ,获得积分10
16秒前
18秒前
难过丹寒发布了新的文献求助10
18秒前
WYX完成签到,获得积分10
18秒前
OsHTAS完成签到,获得积分10
18秒前
QQ完成签到,获得积分10
18秒前
YOMU完成签到,获得积分10
18秒前
laihama完成签到,获得积分10
18秒前
谢家宝树完成签到,获得积分10
18秒前
qcl完成签到,获得积分10
19秒前
小一完成签到,获得积分10
19秒前
20秒前
一一完成签到,获得积分10
20秒前
Serein完成签到 ,获得积分10
21秒前
Andrew02完成签到,获得积分10
21秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471687
求助须知:如何正确求助?哪些是违规求助? 3064600
关于积分的说明 9089012
捐赠科研通 2755276
什么是DOI,文献DOI怎么找? 1511947
邀请新用户注册赠送积分活动 698621
科研通“疑难数据库(出版商)”最低求助积分说明 698494