Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)

医学 病变 计算机辅助设计 食管鳞状细胞癌 接收机工作特性 食管 人工智能 放射科 食管癌 癌症 病理 内科学 计算机科学 工程类 工程制图
作者
Linjie Guo,Xiao Xiao,Chuncheng Wu,Xianhui Zeng,Yuhang Zhang,Jiang Du,Shuai Bai,Jia Xie,Zhiwei Zhang,Yu‐Hong Li,Xuedan Wang,Onpan Cheung,Malay Sharma,Jingjia Liu,Bing Hu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:91 (1): 41-51 被引量:150
标识
DOI:10.1016/j.gie.2019.08.018
摘要

We developed a system for computer-assisted diagnosis (CAD) for real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinomas (ESCCs) to assist the diagnosis of esophageal cancer.A total of 6473 narrow-band imaging (NBI) images, including precancerous lesions, early ESCCs, and noncancerous lesions, were used to train the CAD system. We validated the CAD system using both endoscopic images and video datasets. The receiver operating characteristic curve of the CAD system was generated based on image datasets. An artificial intelligence probability heat map was generated for each input of endoscopic images. The yellow color indicated high possibility of cancerous lesion, and the blue color indicated noncancerous lesions on the probability heat map. When the CAD system detected any precancerous lesion or early ESCCs, the lesion of interest was masked with color.The image datasets contained 1480 malignant NBI images from 59 consecutive cancerous cases (sensitivity, 98.04%) and 5191 noncancerous NBI images from 2004 cases (specificity, 95.03%). The area under curve was 0.989. The video datasets of precancerous lesions or early ESCCs included 27 nonmagnifying videos (per-frame sensitivity 60.8%, per-lesion sensitivity, 100%) and 20 magnifying videos (per-frame sensitivity 96.1%, per-lesion sensitivity, 100%). Unaltered full-range normal esophagus videos included 33 videos (per-frame specificity 99.9%, per-case specificity, 90.9%).A deep learning model demonstrated high sensitivity and specificity for both endoscopic images and video datasets. The real-time CAD system has a promising potential in the near future to assist endoscopists in diagnosing precancerous lesions and ESCCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小周发布了新的文献求助10
1秒前
smile发布了新的文献求助10
1秒前
2秒前
Lore完成签到 ,获得积分10
2秒前
2秒前
jiang完成签到,获得积分10
3秒前
3秒前
无奈的酒窝关注了科研通微信公众号
4秒前
毛毛完成签到,获得积分10
4秒前
正在完成签到,获得积分10
5秒前
5秒前
充电宝应助JR采纳,获得10
6秒前
6秒前
cc完成签到,获得积分20
6秒前
李爱国应助111采纳,获得10
6秒前
jy发布了新的文献求助10
6秒前
好好完成签到 ,获得积分10
7秒前
阿希塔完成签到,获得积分10
7秒前
JamesPei应助看看采纳,获得10
7秒前
9秒前
9秒前
卢健辉发布了新的文献求助10
9秒前
10秒前
cookie完成签到,获得积分10
10秒前
JMZ完成签到 ,获得积分10
12秒前
英姑应助星星采纳,获得10
12秒前
spurs17发布了新的文献求助30
13秒前
LH完成签到,获得积分10
13秒前
CodeCraft应助Island采纳,获得10
14秒前
annis完成签到,获得积分10
14秒前
小黄应助asir_xw采纳,获得10
15秒前
认真的rain完成签到,获得积分10
15秒前
糊涂的小伙完成签到,获得积分10
16秒前
芒果豆豆完成签到,获得积分10
16秒前
赎罪完成签到 ,获得积分10
17秒前
卢健辉完成签到,获得积分10
17秒前
17秒前
18秒前
负责的中道完成签到,获得积分10
19秒前
dyh6802发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808