Improving Cross-Modal Image-Text Retrieval With Teacher-Student Learning

计算机科学 水准点(测量) 图像(数学) 情态动词 人工智能 集合(抽象数据类型) 图像检索 模式 情报检索 模式识别(心理学) 社会学 化学 社会科学 高分子化学 程序设计语言 地理 大地测量学
作者
Junhao Liu,Min Yang,Chengming Li,Ruifeng Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 3242-3253 被引量:26
标识
DOI:10.1109/tcsvt.2020.3037661
摘要

Cross-modal image-text retrieval has emerged as a challenging task that requires the multimedia system to bridge the heterogeneity gap between different modalities. In this paper, we take full advantage of image-to-text and text-to-image generation models to improve the performance of the cross-modal image-text retrieval model by incorporating the text-grounded and image-grounded generative features into the cross-modal common space with a “Two-Teacher One-Student” learning framework. In addition, a dual regularizer network is designed to distinguish the mismatched image-text pairs from the matched ones. In this way, we can capture the fine-grained correspondence between modalities and distinguish the best-retrieved result from a candidate set. Extensive experiments on three benchmark datasets (i.e., MIRFLICKR-25K, NUS-WIDE, and MS COCO) show that our model can achieve state-of-the-art cross-modal retrieval results. In particular, our model improves the image-to-text and text-to-image retrieval accuracy by more than 22% over the best competitors on the MS COCO dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
2秒前
能干冰露完成签到,获得积分10
5秒前
牛奶拌可乐完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助30
7秒前
周小鱼完成签到 ,获得积分10
11秒前
16秒前
24秒前
老张完成签到,获得积分10
30秒前
32秒前
zhugao完成签到,获得积分10
34秒前
37秒前
南风知我意完成签到,获得积分10
40秒前
朴实寻琴完成签到 ,获得积分10
40秒前
可可可爱完成签到 ,获得积分10
43秒前
lsy完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
50秒前
51秒前
51秒前
hwen1998完成签到 ,获得积分10
54秒前
55秒前
56秒前
wwb发布了新的文献求助10
59秒前
1分钟前
1分钟前
LHT完成签到,获得积分10
1分钟前
落寞凌波发布了新的文献求助10
1分钟前
桐桐应助幸福的杨小夕采纳,获得10
1分钟前
韩麒嘉完成签到 ,获得积分10
1分钟前
聪慧的凝海完成签到 ,获得积分0
1分钟前
1分钟前
wwb发布了新的文献求助10
1分钟前
phil完成签到 ,获得积分10
1分钟前
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
滴滴滴完成签到 ,获得积分10
1分钟前
yangsi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022