Biallelic Loss of BCMA Triggers Resistance to Anti-BCMA CAR T Cell Therapy in Multiple Myeloma

嵌合抗原受体 汽车T细胞治疗 多发性骨髓瘤 医学 T细胞 抗原 免疫学 骨髓 癌症研究 免疫系统
作者
Mehmet K. Samur,Mariateresa Fulciniti,Anıl Aktaş-Samur,Abdul Hamid Bazarbachi,Yu‐Tzu Tai,Timothy B. Campbell,Fabio Petrocca,Kristen Hege,Shari M. Kaiser,Kenneth C. Anderson,Nikhil C. Munshi
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 14-14 被引量:10
标识
DOI:10.1182/blood-2020-139040
摘要

Chimeric antigen receptor (CAR) T-cell therapy targeting B cell maturation antigen (BCMA) has provided deep (73% - 100%) responses in relapsed/refractory multiple myeloma (MM). However, median PFS has been less than 12 months, and amongst the small number of patients retreated at the time of progression with the same CAR T product, responses have been infrequent. This highlights development of resistance that may preclude effectiveness of the 2ndinfusion, and may also underly relapse following response to the initial CAR-T cell therapy. Here, we have investigated one of the resistance mechanisms using longitudinal single cell transcriptomic and bulk genomic analysis. This patient had relapsed/refractory IgG lambda MM with hypodiploidy and a complex karyotype with t(8;12) (q24;q14), clonal t(11;14) (q13;q32), and clonal deletion 13. Patient received 150x106CAR+ T cells (ide-cel) and achieved partial response, with duration of response of 8 months. The patient was retreated with 450 x106CAR+ T cells at relapse, but with no response. To delineate the resistance mechanism, we evaluated the bone marrow (BM) niche using 37658 cells from eight time points from before 1st CAR T cell infusion to 2 months after 2nd CAR T cell infusion, and identified 13 clusters consisting of hematopoietic cells and MM/plasma cells. Using RT-PCR based detection, we observed engineered CAR T cells only at 2 weeks after first infusion, when maximal CAR T cell expansion was observed. We did not observe infused CAR T cells with single cell RNAseq after 2ndinfusion, but a limited expansion was confirmed using RT-PCR.Re-clustering of the T cell cluster showed an increased proportion of CD4+ helper and T regulatory cells (Treg) 2 weeks after 1st infusion. In contrast, TREG proportion remained constant at the 2nd infusion, suggesting other causes for lack of expansion of CAR-T cells. We also did not identify any significant increase in the proportion of cells expressing immune check point inhibitory markers or in accessory cell types with immune inhibitory function in MM BM. Since we did not delinate a role of the BM milieu mediating suppression of CAR-T cell expansion and function following 2ndinfusion, we next explored tumor intrinsic factors. Soluble BCMA level (produced predominantly by MM cells) was high before the first CAR T cell infusion and dropped significantly to a very low level coinciding with the clinical response; however, it remained low even at the time of relapse with increase burden of MM, indicating a lack of BCMA production by MM cells. We therefore investigated genomic changes in MM cells at the time of relapse. Our single cell analysis of BM samples identified 3 samples (at the time of relapse and post 2ndCAR T cell infusion) with significant numbers of MM cells, evidenced by expression of CD138 and XBP1 (marker of plasma cells), CCND1 (upregulated in this patient with t(11;14)) and lack of RB1 (downregulated in this patient with del13). Imputation of copy number alterations scRNAseq showed that the majority of MM cells had a deletion of 16p, including the BCMA locus located on 16p13.13. We further validated these findings using deep whole exome sequencing (WES) of purified CD138+ cells collected after the second CAR T infusion. Before first CAR T cell infusion, 4% MM cells showed deletion 17p, while after second infusion both WES and scRNAseq prediction showed that del17p and del16p were clonal, and longitudinal scRNAseq analysis indicated that del17p and del16p co-occurred in the same clone. Moreover, WES identified a subclonal nonsense mutation (p.Q38*) in BCMA that creates an early stop codon in the BCMA gene. This biallelic BCMA deletion, acquired with one copy loss and a 2ndloss-of-function mutation, provides the molecular basis for lack of BCMA expression in MM cells at the time of relapse. Our data showed that both TP53 and BCMA had deletion in one allele and mutation in the second allele. These results identify biallelic loss of BCMA locus as a potential resistance mechanism to BCMA targeting therapy. Our results highlight the need to investigate sBCMA as a potential indicator of BCMA loss at relapse, and to carry out detailed transcriptomic or genomic analysis to confirm mutations. Moreover, these data also demonstrate the ability of MM cells to survive without BCMA expression. With the growing number of BCMA targeting therapeutic modalities under development, we would expect to see such occurrences more commonly in the future. Disclosures Fulciniti: NIH: Research Funding. Campbell:BMS: Current Employment, Current equity holder in publicly-traded company. Petrocca:bluebird, bio: Current Employment, Current equity holder in publicly-traded company. Hege:Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company), Patents & Royalties: numerous, Research Funding; Celgene (acquired by Bristol Myers Squibb): Ended employment in the past 24 months; Mersana Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Arcus Biosciences (Former Board of Directors): Divested equity in a private or publicly-traded company in the past 24 months. Kaiser:BMS: Current Employment, Current equity holder in publicly-traded company. Anderson:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics.. Munshi:C4: Current equity holder in private company; Legend: Consultancy; OncoPep: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; BMS: Consultancy; Janssen: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; AbbVie: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智傀斗完成签到 ,获得积分0
2秒前
Song完成签到 ,获得积分10
2秒前
Hehehehe完成签到 ,获得积分10
3秒前
锂离子完成签到,获得积分10
4秒前
拼搏的白云完成签到,获得积分10
4秒前
慕山完成签到 ,获得积分10
6秒前
7秒前
啊啊啊啊完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
hbj完成签到,获得积分10
9秒前
苏东方完成签到,获得积分10
9秒前
英俊枫完成签到,获得积分10
10秒前
fx完成签到,获得积分10
10秒前
Regina_thu完成签到,获得积分10
11秒前
张晟辉发布了新的文献求助10
12秒前
少吃一口完成签到,获得积分10
12秒前
CMD完成签到 ,获得积分10
12秒前
目土土完成签到 ,获得积分10
12秒前
Zurlliant完成签到,获得积分10
13秒前
孤独雨梅完成签到,获得积分10
13秒前
刻苦不弱完成签到,获得积分10
14秒前
橙子完成签到 ,获得积分10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
小稻草人应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
封闭货车完成签到 ,获得积分10
16秒前
贤惠的老黑完成签到 ,获得积分10
16秒前
刻苦不弱发布了新的文献求助20
17秒前
hrs完成签到,获得积分10
17秒前
积极的尔白完成签到 ,获得积分10
17秒前
leezz完成签到,获得积分10
20秒前
鲸鱼打滚完成签到 ,获得积分10
21秒前
hollow完成签到,获得积分10
22秒前
mito完成签到,获得积分10
24秒前
长风完成签到 ,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027