Deep Tone Mapping Operator for High Dynamic Range Images

色调映射 高动态范围 计算机科学 鉴别器 杠杆(统计) 人工智能 高动态范围成像 计算机视觉 深度学习 动态范围 可视化 电信 探测器
作者
Aakanksha Rana,Praveer Singh,Giuseppe Valenzise,Frédéric Dufaux,Nikos Komodakis,Aljoša Smolić
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1285-1298 被引量:76
标识
DOI:10.1109/tip.2019.2936649
摘要

A computationally fast tone mapping operator (TMO) that can quickly adapt to a wide spectrum of high dynamic range (HDR) content is quintessential for visualization on varied low dynamic range (LDR) output devices such as movie screens or standard displays. Existing TMOs can successfully tone-map only a limited number of HDR content and require an extensive parameter tuning to yield the best subjective-quality tone-mapped output. In this paper, we address this problem by proposing a fast, parameter-free and scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and high-subjective quality tone mapped output. Based on conditional generative adversarial network (cGAN), DeepTMO not only learns to adapt to vast scenic-content (e.g., outdoor, indoor, human, structures, etc.) but also tackles the HDR related scene-specific challenges such as contrast and brightness, while preserving the fine-grained details. We explore 4 possible combinations of Generator-Discriminator architectural designs to specifically address some prominent issues in HDR related deep-learning frameworks like blurring, tiling patterns and saturation artifacts. By exploring different influences of scales, loss-functions and normalization layers under a cGAN setting, we conclude with adopting a multi-scale model for our task. To further leverage on the large-scale availability of unlabeled HDR data, we train our network by generating targets using an objective HDR quality metric, namely Tone Mapping Image Quality Index (TMQI). We demonstrate results both quantitatively and qualitatively, and showcase that our DeepTMO generates high-resolution, high-quality output images over a large spectrum of real-world scenes. Finally, we evaluate the perceived quality of our results by conducting a pair-wise subjective study which confirms the versatility of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小麦发布了新的文献求助10
1秒前
玛卡巴卡完成签到 ,获得积分10
1秒前
1秒前
稳重的菠萝关注了科研通微信公众号
1秒前
LJH完成签到,获得积分10
3秒前
3秒前
3秒前
Orange应助白云苍狗采纳,获得10
4秒前
zxl发布了新的文献求助10
4秒前
牛马人发布了新的文献求助10
6秒前
陙兂发布了新的文献求助10
7秒前
官官发布了新的文献求助10
7秒前
8秒前
XRWei完成签到 ,获得积分10
8秒前
玖玖发布了新的文献求助10
8秒前
Joshua发布了新的文献求助10
10秒前
luo完成签到,获得积分10
13秒前
木冰衿完成签到,获得积分10
13秒前
英俊的铭应助萝卜鱼芋采纳,获得10
14秒前
surilige完成签到 ,获得积分10
16秒前
lijiayi完成签到,获得积分10
18秒前
18秒前
19秒前
Raven完成签到,获得积分10
19秒前
19秒前
19秒前
清风明月完成签到 ,获得积分10
20秒前
20秒前
21秒前
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
欣慰煎蛋应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548