Deep Tone Mapping Operator for High Dynamic Range Images

色调映射 高动态范围 计算机科学 鉴别器 杠杆(统计) 人工智能 高动态范围成像 计算机视觉 深度学习 动态范围 可视化 电信 探测器
作者
Aakanksha Rana,Praveer Singh,Giuseppe Valenzise,Frédéric Dufaux,Nikos Komodakis,Aljoša Smolić
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1285-1298 被引量:76
标识
DOI:10.1109/tip.2019.2936649
摘要

A computationally fast tone mapping operator (TMO) that can quickly adapt to a wide spectrum of high dynamic range (HDR) content is quintessential for visualization on varied low dynamic range (LDR) output devices such as movie screens or standard displays. Existing TMOs can successfully tone-map only a limited number of HDR content and require an extensive parameter tuning to yield the best subjective-quality tone-mapped output. In this paper, we address this problem by proposing a fast, parameter-free and scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and high-subjective quality tone mapped output. Based on conditional generative adversarial network (cGAN), DeepTMO not only learns to adapt to vast scenic-content (e.g., outdoor, indoor, human, structures, etc.) but also tackles the HDR related scene-specific challenges such as contrast and brightness, while preserving the fine-grained details. We explore 4 possible combinations of Generator-Discriminator architectural designs to specifically address some prominent issues in HDR related deep-learning frameworks like blurring, tiling patterns and saturation artifacts. By exploring different influences of scales, loss-functions and normalization layers under a cGAN setting, we conclude with adopting a multi-scale model for our task. To further leverage on the large-scale availability of unlabeled HDR data, we train our network by generating targets using an objective HDR quality metric, namely Tone Mapping Image Quality Index (TMQI). We demonstrate results both quantitatively and qualitatively, and showcase that our DeepTMO generates high-resolution, high-quality output images over a large spectrum of real-world scenes. Finally, we evaluate the perceived quality of our results by conducting a pair-wise subjective study which confirms the versatility of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Tracy麦子采纳,获得10
刚刚
刚刚
huhuhu发布了新的文献求助10
刚刚
doxiao发布了新的文献求助10
2秒前
ixueyi发布了新的文献求助10
3秒前
水1111发布了新的文献求助10
4秒前
小丽酱发布了新的文献求助10
4秒前
Hty1764完成签到,获得积分10
4秒前
能干的棉花糖完成签到,获得积分10
5秒前
6秒前
6秒前
Evan应助费费Queen采纳,获得10
11秒前
任梓宁发布了新的文献求助10
11秒前
Gan完成签到,获得积分10
11秒前
研友_VZG7GZ应助yrt采纳,获得10
11秒前
11秒前
十月发布了新的文献求助10
12秒前
华仔应助旋转木马9个采纳,获得10
13秒前
浔城游侠完成签到,获得积分10
13秒前
Az完成签到,获得积分10
14秒前
15秒前
15秒前
xiaopingbing完成签到 ,获得积分10
15秒前
SciGPT应助Aventen采纳,获得10
15秒前
Aurora完成签到,获得积分10
17秒前
19秒前
jzyy发布了新的文献求助10
20秒前
103921wjk完成签到,获得积分10
20秒前
Ergou完成签到 ,获得积分20
20秒前
史道夫发布了新的文献求助10
22秒前
dizi_88应助zhaozhao采纳,获得10
24秒前
znlion完成签到,获得积分10
24秒前
ILUIGANG发布了新的文献求助30
24秒前
24秒前
努力上进的小张完成签到,获得积分10
25秒前
书霂完成签到,获得积分10
26秒前
fuje完成签到,获得积分10
27秒前
28秒前
31秒前
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809