Deep Tone Mapping Operator for High Dynamic Range Images

色调映射 高动态范围 计算机科学 鉴别器 杠杆(统计) 人工智能 高动态范围成像 计算机视觉 深度学习 动态范围 可视化 电信 探测器
作者
Aakanksha Rana,Praveer Singh,Giuseppe Valenzise,Frédéric Dufaux,Nikos Komodakis,Aljoša Smolić
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1285-1298 被引量:76
标识
DOI:10.1109/tip.2019.2936649
摘要

A computationally fast tone mapping operator (TMO) that can quickly adapt to a wide spectrum of high dynamic range (HDR) content is quintessential for visualization on varied low dynamic range (LDR) output devices such as movie screens or standard displays. Existing TMOs can successfully tone-map only a limited number of HDR content and require an extensive parameter tuning to yield the best subjective-quality tone-mapped output. In this paper, we address this problem by proposing a fast, parameter-free and scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and high-subjective quality tone mapped output. Based on conditional generative adversarial network (cGAN), DeepTMO not only learns to adapt to vast scenic-content (e.g., outdoor, indoor, human, structures, etc.) but also tackles the HDR related scene-specific challenges such as contrast and brightness, while preserving the fine-grained details. We explore 4 possible combinations of Generator-Discriminator architectural designs to specifically address some prominent issues in HDR related deep-learning frameworks like blurring, tiling patterns and saturation artifacts. By exploring different influences of scales, loss-functions and normalization layers under a cGAN setting, we conclude with adopting a multi-scale model for our task. To further leverage on the large-scale availability of unlabeled HDR data, we train our network by generating targets using an objective HDR quality metric, namely Tone Mapping Image Quality Index (TMQI). We demonstrate results both quantitatively and qualitatively, and showcase that our DeepTMO generates high-resolution, high-quality output images over a large spectrum of real-world scenes. Finally, we evaluate the perceived quality of our results by conducting a pair-wise subjective study which confirms the versatility of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
cccf发布了新的文献求助10
3秒前
Zewen_Li应助研友_LJGOan采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
烤乳猪发布了新的文献求助10
5秒前
难过以晴发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
lmd250909完成签到,获得积分10
8秒前
8秒前
国家一级保护废物点心完成签到,获得积分10
9秒前
李健的粉丝团团长应助cccf采纳,获得100
10秒前
GUIGUI发布了新的文献求助10
10秒前
10秒前
忘尘发布了新的文献求助10
10秒前
Gnehsnuy完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
和谐项链发布了新的文献求助10
13秒前
紫熊发布了新的文献求助20
15秒前
土土完成签到,获得积分10
15秒前
优美芝发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
Xing发布了新的文献求助10
17秒前
oleskarabach发布了新的文献求助10
17秒前
香菜兔子完成签到,获得积分10
18秒前
GUIGUI完成签到,获得积分10
18秒前
科研通AI6应助renren采纳,获得10
18秒前
愉快又莲发布了新的文献求助10
20秒前
淡然紫寒发布了新的文献求助10
21秒前
123完成签到 ,获得积分10
22秒前
22秒前
23秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408