Peer Collaborative Learning for Online Knowledge Distillation

计算机科学 机器学习 人工智能 协作学习 蒸馏 构造(python库) 分类器(UML) 集成学习 知识转移 知识管理 有机化学 化学 程序设计语言
作者
Guile Wu,Shaogang Gong
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (12): 10302-10310 被引量:80
标识
DOI:10.1609/aaai.v35i12.17234
摘要

Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviates this limitation by collaborative learning, mutual learning and online ensembling, following a one-stage end-to-end training fashion. However, collaborative learning and mutual learning fail to construct an online high-capacity teacher, whilst online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. In this work, we propose a novel Peer Collaborative Learning method for online knowledge distillation, which integrates online ensembling and network collaboration into a unified framework. Specifically, given a target network, we construct a multi-branch network for training, in which each branch is called a peer. We perform random augmentation multiple times on the inputs to peers and assemble feature representations outputted from peers with an additional classifier as the peer ensemble teacher. This helps to transfer knowledge from a high-capacity teacher to peers, and in turn further optimises the ensemble teacher. Meanwhile, we employ the temporal mean model of each peer as the peer mean teacher to collaboratively transfer knowledge among peers, which helps each peer to learn richer knowledge and facilitates to optimise a more stable model with better generalisation. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet show that the proposed method significantly improves the generalisation of various backbone networks and outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Four3210发布了新的文献求助10
刚刚
左丘幼旋1完成签到,获得积分20
刚刚
细心的抽屉完成签到,获得积分20
1秒前
无私乐驹完成签到,获得积分10
1秒前
云平时光完成签到,获得积分20
1秒前
2秒前
pl脆脆发布了新的文献求助10
2秒前
2秒前
左丘幼旋1发布了新的文献求助10
2秒前
2秒前
科研通AI5应助falcon采纳,获得10
3秒前
3秒前
3秒前
ITACHI发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
余诗卉发布了新的文献求助30
4秒前
大模型应助健忘书兰采纳,获得10
4秒前
Titi发布了新的文献求助10
4秒前
大雁高飞出不胜寒完成签到,获得积分10
4秒前
希望天下0贩的0应助小黑采纳,获得10
5秒前
5秒前
jjjjjj完成签到,获得积分10
5秒前
6秒前
科研头痛发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
芬达发布了新的文献求助10
7秒前
搜集达人应助Four3210采纳,获得10
7秒前
王清发布了新的文献求助10
7秒前
7秒前
英姑应助1233333采纳,获得10
7秒前
8秒前
ZZJ发布了新的文献求助10
8秒前
chenchen发布了新的文献求助10
8秒前
pl脆脆完成签到 ,获得积分20
10秒前
ghost发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792