Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases

细胞器 微管 细胞生物学 生物 细胞骨架 肌动蛋白 细胞质 染色质 生物发生 化学 细胞 基因 遗传学
作者
Hong Zhang,Ji Xiong,Pilong Li,Cong Liu,Jizhong Lou,Zheng Wang,Wenyu Wen,Yue Xiao,Mingjie Zhang,Xueliang Zhu
出处
期刊:Science China-life Sciences [Springer Nature]
卷期号:63 (7): 953-985 被引量:246
标识
DOI:10.1007/s11427-020-1702-x
摘要

Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation (LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization, gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin- and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre- and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
二由完成签到 ,获得积分10
1秒前
CodeCraft应助小幸运采纳,获得10
2秒前
Ray发布了新的文献求助10
2秒前
哈哈悦完成签到,获得积分10
2秒前
3秒前
3秒前
霜降完成签到,获得积分10
4秒前
4秒前
4秒前
chengymao发布了新的文献求助10
5秒前
shae_2022发布了新的文献求助10
5秒前
白杨发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
8秒前
yyc发布了新的文献求助10
8秒前
Edward发布了新的文献求助10
9秒前
五五完成签到,获得积分10
9秒前
9秒前
wenwen发布了新的文献求助10
10秒前
10秒前
yuyull发布了新的文献求助10
11秒前
星辰大海应助二由采纳,获得30
12秒前
13秒前
13秒前
jackycas发布了新的文献求助10
14秒前
15秒前
15秒前
小幸运发布了新的文献求助10
16秒前
16秒前
no完成签到,获得积分10
16秒前
tooz发布了新的文献求助10
18秒前
19秒前
dmhdf关注了科研通微信公众号
19秒前
穆羊青发布了新的文献求助10
20秒前
20秒前
高源伯发布了新的文献求助10
21秒前
JamesPei应助郭翔采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469715
求助须知:如何正确求助?哪些是违规求助? 3062911
关于积分的说明 9080378
捐赠科研通 2753084
什么是DOI,文献DOI怎么找? 1510742
邀请新用户注册赠送积分活动 697987
科研通“疑难数据库(出版商)”最低求助积分说明 697975