An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study

前列腺癌 医学 接收机工作特性 旁侵犯 算法 前列腺 金标准(测试) 癌症 放射科 人工智能 病理 计算机科学 内科学
作者
Liron Pantanowitz,Gabriela Quiroga‐Garza,Lilach Bien,Ronen Heled,Daphna Laifenfeld,Chaim Linhart,Judith Sandbank,Anat Albrecht Shach,Varda Shalev,Manuela Vecsler,Pamela Michelow,Scott Hazelhurst,Rajiv Dhir
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:2 (8): e407-e416 被引量:255
标识
DOI:10.1016/s2589-7500(20)30159-x
摘要

BackgroundThere is high demand to develop computer-assisted diagnostic tools to evaluate prostate core needle biopsies (CNBs), but little clinical validation and a lack of clinical deployment of such tools. We report here on a blinded clinical validation study and deployment of an artificial intelligence (AI)-based algorithm in a pathology laboratory for routine clinical use to aid prostate diagnosis.MethodsAn AI-based algorithm was developed using haematoxylin and eosin (H&E)-stained slides of prostate CNBs digitised with a Philips scanner, which were divided into training (1 357 480 image patches from 549 H&E-stained slides) and internal test (2501 H&E-stained slides) datasets. The algorithm provided slide-level scores for probability of cancer, Gleason score 7–10 (vs Gleason score 6 or atypical small acinar proliferation [ASAP]), Gleason pattern 5, and perineural invasion and calculation of cancer percentage present in CNB material. The algorithm was subsequently validated on an external dataset of 100 consecutive cases (1627 H&E-stained slides) digitised on an Aperio AT2 scanner. In addition, the AI tool was implemented in a pathology laboratory within routine clinical workflow as a second read system to review all prostate CNBs. Algorithm performance was assessed with area under the receiver operating characteristic curve (AUC), specificity, and sensitivity, as well as Pearson's correlation coefficient (Pearson's r) for cancer percentage.FindingsThe algorithm achieved an AUC of 0·997 (95% CI 0·995 to 0·998) for cancer detection in the internal test set and 0·991 (0·979 to 1·00) in the external validation set. The AUC for distinguishing between a low-grade (Gleason score 6 or ASAP) and high-grade (Gleason score 7–10) cancer diagnosis was 0·941 (0·905 to 0·977) and the AUC for detecting Gleason pattern 5 was 0·971 (0·943 to 0·998) in the external validation set. Cancer percentage calculated by pathologists and the algorithm showed good agreement (r=0·882, 95% CI 0·834 to 0·915; p<0·0001) with a mean bias of −4·14% (−6·36 to −1·91). The algorithm achieved an AUC of 0·957 (0·930 to 0·985) for perineural invasion. In routine practice, the algorithm was used to assess 11 429 H&E-stained slides pertaining to 941 cases leading to 90 Gleason score 7–10 alerts and 560 cancer alerts. 51 (9%) cancer alerts led to additional cuts or stains being ordered, two (4%) of which led to a third opinion request. We report on the first case of missed cancer that was detected by the algorithm.InterpretationThis study reports the successful development, external clinical validation, and deployment in clinical practice of an AI-based algorithm to accurately detect, grade, and evaluate clinically relevant findings in digitised slides of prostate CNBs.FundingIbex Medical Analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助何吉民采纳,获得10
1秒前
emberflow完成签到,获得积分10
2秒前
2秒前
十公里发布了新的文献求助10
4秒前
古添成发布了新的文献求助10
4秒前
5秒前
万能图书馆应助李小鑫吖采纳,获得10
6秒前
Novice6354完成签到 ,获得积分10
6秒前
6秒前
6秒前
科研通AI5应助52hezi采纳,获得10
7秒前
Owen应助曾曾采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
大卫戴完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
12秒前
Longye4424完成签到,获得积分10
12秒前
七星嘿咻完成签到,获得积分10
13秒前
给钱谢谢发布了新的文献求助10
13秒前
乔树伟发布了新的文献求助10
14秒前
14秒前
17秒前
小咚咚咚完成签到,获得积分10
17秒前
17秒前
cugwzr完成签到,获得积分10
17秒前
害羞的问丝完成签到,获得积分10
17秒前
18秒前
雪球完成签到,获得积分20
18秒前
mft1989mft发布了新的文献求助10
19秒前
科研通AI5应助李某人采纳,获得30
19秒前
咕咚发布了新的文献求助10
19秒前
19秒前
气急败坏的卡尔王完成签到 ,获得积分10
20秒前
Joshua完成签到,获得积分10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726748
求助须知:如何正确求助?哪些是违规求助? 3271748
关于积分的说明 9973342
捐赠科研通 2987102
什么是DOI,文献DOI怎么找? 1638657
邀请新用户注册赠送积分活动 778244
科研通“疑难数据库(出版商)”最低求助积分说明 747527