亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Diagnosis of Microgrid Networks’ Power Device Faults Based on Stacked Denoising Autoencoders and Adaptive Affinity Propagation Clustering

聚类分析 模式识别(心理学) 计算机科学 人工智能 主成分分析 降维 轮廓 模糊逻辑 降噪 特征提取 算法
作者
Fan Xu,Xin Shu,Xiaodi Zhang,Bo Fan
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2020: 1-24 被引量:8
标识
DOI:10.1155/2020/8509142
摘要

This paper presents a model based on stacked denoising autoencoders (SDAEs) in deep learning and adaptive affinity propagation (adAP) for bearing fault diagnosis automatically. First, SDAEs are used to extract potential fault features and directly reduce their high dimension to 3. To prove that the feature extraction capability of SDAEs is better than stacked autoencoders (SAEs), principal component analysis (PCA) is employed to compare and reduce their dimension to 3, except for the final hidden layer. Hence, the extracted 3-dimensional features are chosen as the input for adAP cluster models. Compared with other traditional cluster methods, such as the Fuzzy C-mean (FCM), Gustafson–Kessel (GK), Gath–Geva (GG), and affinity propagation (AP), clustering algorithms can identify fault samples without cluster center number selection. However, AP needs to set two key parameters depending on manual experience—the damping factor and the bias parameter—before its calculation. To overcome this drawback, adAP is introduced in this paper. The adAP clustering algorithm can find the available parameters according to the fitness function automatic. Finally, the experimental results prove that SDAEs with adAP are better than other models, including SDAE-FCM/GK/GG according to the cluster assess index (Silhouette) and the classification error rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sissiarno发布了新的文献求助300
2秒前
wmq完成签到,获得积分10
4秒前
李爱国应助sun采纳,获得10
14秒前
24秒前
上官若男应助HZY采纳,获得10
24秒前
kkk完成签到 ,获得积分10
26秒前
谢挽风完成签到,获得积分10
27秒前
善学以致用应助vuu采纳,获得30
36秒前
火星上含芙完成签到 ,获得积分10
40秒前
笔墨留香完成签到,获得积分10
42秒前
科研通AI6应助sun采纳,获得10
49秒前
忧虑的代容完成签到,获得积分10
51秒前
52秒前
奔跑的小熊完成签到 ,获得积分10
53秒前
有趣的银发布了新的文献求助10
57秒前
科研通AI6应助sun采纳,获得10
1分钟前
有趣的银完成签到,获得积分10
1分钟前
小蝶完成签到 ,获得积分10
1分钟前
爱学习的YY完成签到 ,获得积分10
1分钟前
共享精神应助干净南风采纳,获得10
1分钟前
sun发布了新的文献求助10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
归尘发布了新的文献求助10
1分钟前
豆子应助rose采纳,获得20
1分钟前
1分钟前
1分钟前
二丙发布了新的文献求助10
1分钟前
归尘完成签到,获得积分10
1分钟前
sun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dice°完成签到,获得积分20
1分钟前
飞龙在天完成签到,获得积分10
1分钟前
1分钟前
orange完成签到 ,获得积分10
1分钟前
1分钟前
Dice°发布了新的文献求助10
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
浮游应助葛力采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232425
求助须知:如何正确求助?哪些是违规求助? 4401744
关于积分的说明 13699291
捐赠科研通 4268089
什么是DOI,文献DOI怎么找? 2342347
邀请新用户注册赠送积分活动 1339394
关于科研通互助平台的介绍 1295992