亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Diagnosis of Microgrid Networks’ Power Device Faults Based on Stacked Denoising Autoencoders and Adaptive Affinity Propagation Clustering

聚类分析 模式识别(心理学) 计算机科学 人工智能 主成分分析 降维 轮廓 模糊逻辑 降噪 特征提取 算法
作者
Fan Xu,Xin Shu,Xiaodi Zhang,Bo Fan
出处
期刊:Complexity [Hindawi Limited]
卷期号:2020: 1-24 被引量:8
标识
DOI:10.1155/2020/8509142
摘要

This paper presents a model based on stacked denoising autoencoders (SDAEs) in deep learning and adaptive affinity propagation (adAP) for bearing fault diagnosis automatically. First, SDAEs are used to extract potential fault features and directly reduce their high dimension to 3. To prove that the feature extraction capability of SDAEs is better than stacked autoencoders (SAEs), principal component analysis (PCA) is employed to compare and reduce their dimension to 3, except for the final hidden layer. Hence, the extracted 3-dimensional features are chosen as the input for adAP cluster models. Compared with other traditional cluster methods, such as the Fuzzy C-mean (FCM), Gustafson–Kessel (GK), Gath–Geva (GG), and affinity propagation (AP), clustering algorithms can identify fault samples without cluster center number selection. However, AP needs to set two key parameters depending on manual experience—the damping factor and the bias parameter—before its calculation. To overcome this drawback, adAP is introduced in this paper. The adAP clustering algorithm can find the available parameters according to the fitness function automatic. Finally, the experimental results prove that SDAEs with adAP are better than other models, including SDAE-FCM/GK/GG according to the cluster assess index (Silhouette) and the classification error rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
坦率的金针菇完成签到 ,获得积分10
2秒前
2秒前
眯眯眼的雪莲完成签到 ,获得积分10
3秒前
kendall完成签到 ,获得积分10
3秒前
仰勒完成签到 ,获得积分10
7秒前
季禹发布了新的文献求助10
8秒前
freyaaaaa应助科研通管家采纳,获得30
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
GIA发布了新的文献求助10
22秒前
小马完成签到,获得积分10
23秒前
jumbaumba完成签到,获得积分10
30秒前
36秒前
41秒前
43秒前
从来都不会放弃zr完成签到,获得积分10
47秒前
积极废物完成签到 ,获得积分10
1分钟前
Kinkrit完成签到 ,获得积分10
1分钟前
敏敏9813完成签到,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
阔达凝天完成签到,获得积分10
1分钟前
TiTiMer发布了新的文献求助10
1分钟前
1分钟前
蓝色的纪念完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
Chi_bio完成签到,获得积分10
2分钟前
晚星完成签到 ,获得积分10
2分钟前
江枫渔火完成签到 ,获得积分10
2分钟前
焱焱不忘完成签到 ,获得积分0
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498268
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449353
捐赠科研通 4528276
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465573
关于科研通互助平台的介绍 1438310