DCT-MIL: Deep CNN transferred multiple instance learning for COPD identification using CT images

慢性阻塞性肺病 肺病 计算机科学 人工智能 计算机断层摄影 鉴定(生物学) 离散余弦变换 深度学习 模式识别(心理学) 病态的 医学 放射科 计算机断层摄影术 计算机视觉 图像(数学) 病理 内科学 生物 植物
作者
Caiwen Xu,Shouliang Qi,Jie Feng,Shuyue Xia,Yan Kang,Yudong Yao,Wei Qian
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (14): 145011-145011 被引量:36
标识
DOI:10.1088/1361-6560/ab857d
摘要

While many pre-defined computed tomographic (CT) measures have been utilized to characterize chronic obstructive pulmonary disease (COPD), it is still challenging to represent pathological alternations of multiple dimensions and highly spatial heterogeneity. Deep CNN transferred multiple instance learning (DCT-MIL) is proposed to identify COPD via CT images. After the lung is divided into eight sections along the axial direction, one random axial CT image is taken out from each section as one instance. With one instance as the input, the activations of neural layers of AlexNet trained by natural images are extracted as features. After dimension reduction through principle component analysis, features of all instances are input into three MIL methods: Citation k-Nearest-Neighbor (Citation-KNN), multiple instance support vector machine, and expectation-maximization diverse density. Moreover, the performance dependence of the resulted models on the depth of the neural layer where activations are extracted and the number of features is investigated. The proposed DCT-MIL achieves an exceptional performance with an accuracy of 99.29% and area under curve of 0.9826 while using 100 principle components of features extracted from the fourth convolutional layer and Citation-KNN. It outperforms not only DCT-MIL models using other settings and the pre-trained AlexNet with fine-tuning by montages of eight lung CT images, but also other state-of-art methods. Deep CNN transferred multiple instance learning is suited for identification of COPD using CT images. It can help finding subgroups with high risk of COPD from large populations through CT scans ordered doing lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木头羊发布了新的文献求助10
刚刚
刚刚
wangwei完成签到 ,获得积分10
刚刚
安南完成签到 ,获得积分10
刚刚
1秒前
ttrr完成签到,获得积分10
2秒前
zheng发布了新的文献求助10
2秒前
Jadedew完成签到,获得积分10
2秒前
JamesPei应助我迷了鹿采纳,获得10
2秒前
lx发布了新的文献求助30
3秒前
3秒前
ziyuixnshi发布了新的文献求助10
4秒前
4秒前
Ava应助demian采纳,获得10
4秒前
Tireastani应助刘四毛采纳,获得10
5秒前
ally完成签到,获得积分10
6秒前
搬砖的冰美式完成签到,获得积分10
6秒前
丞123完成签到,获得积分10
6秒前
大型海狮完成签到,获得积分10
7秒前
Hyh_发布了新的文献求助10
7秒前
天天快乐应助lzh采纳,获得10
8秒前
zpz发布了新的文献求助10
8秒前
李爱国应助SAODEN采纳,获得10
8秒前
苹果丝完成签到 ,获得积分10
8秒前
10秒前
10秒前
10秒前
www完成签到,获得积分10
11秒前
zxm完成签到,获得积分10
11秒前
北念霜oD4完成签到,获得积分10
11秒前
12秒前
111完成签到 ,获得积分10
12秒前
123完成签到,获得积分10
12秒前
淡水痕完成签到,获得积分10
12秒前
12秒前
乔垣结衣完成签到,获得积分10
13秒前
呆呆完成签到 ,获得积分10
13秒前
ginkgoleaf发布了新的文献求助10
13秒前
飘逸鸵鸟发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582