Applications of link prediction in social networks: A review

计算机科学 社交网络(社会语言学) 链接(几何体) 社会网络分析 数据科学 动态网络分析 异常检测 网络科学 推荐系统 链路分析 复杂网络 数据挖掘 机器学习 人工智能 社会化媒体 万维网 计算机网络
作者
Nur Nasuha Daud,Siti Hafizah Ab Hamid,Muntadher Saadoon,Firdaus Sahran,Nor Badrul Anuar
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:166: 102716-102716 被引量:300
标识
DOI:10.1016/j.jnca.2020.102716
摘要

Link prediction methods anticipate the likelihood of a future connection between two nodes in a given network. The methods are essential in social networks to infer social interactions or to suggest possible friends to the users. Rapid social network growth trigger link prediction analysis to be more challenging especially with the significant advancement in complex social network modeling. Researchers implement numerous applications related to link prediction analysis in different network contexts such as dynamic network, weighted network, heterogeneous network and cross network. However, link prediction applications namely, recommendation system, anomaly detection, influence analysis and community detection become more strenuous due to network diversity, complex and dynamic network contexts. In the past decade, several reviews on link prediction were published to discuss the algorithms, state-of-the-art, applications, challenges and future directions of link prediction research. However, the discussion was limited to physical domains and had less focus on social network perspectives. To reduce the gap of the existing reviews, this paper aims to provide a comprehensive review and discuss link prediction applications in different social network contexts and analyses, focusing on social networks. In this paper, we also present conventional link prediction measures based on previous researches. Furthermore, we introduce various link prediction approaches and address how researchers combined link prediction as a base method to perform other applications in social networks such as recommender systems, community detection, anomaly detection and influence analysis. Finally, we conclude the review with a discussion on recent researches and highlight several future research directions of link prediction in social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NoMi完成签到,获得积分10
刚刚
刚刚
着急的千山完成签到 ,获得积分10
刚刚
称心翠容完成签到,获得积分10
刚刚
落后井发布了新的文献求助100
1秒前
橘舰长完成签到,获得积分10
1秒前
1秒前
小二郎应助冰淇淋啦啦啦采纳,获得10
1秒前
dyy123发布了新的文献求助10
2秒前
思源应助灵巧墨镜采纳,获得10
2秒前
FashionBoy应助平常的小郭采纳,获得10
2秒前
林子完成签到,获得积分10
2秒前
科研通AI6应助回颜轻生采纳,获得10
3秒前
大橙子完成签到,获得积分10
3秒前
3秒前
3秒前
歼击机88完成签到,获得积分10
3秒前
YY完成签到,获得积分10
3秒前
NexusExplorer应助vvan采纳,获得10
3秒前
3秒前
浮游应助wangli采纳,获得10
5秒前
霁雨花君发布了新的文献求助10
5秒前
meng发布了新的文献求助10
5秒前
砥砺完成签到,获得积分10
5秒前
浩浩发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
Apricity发布了新的文献求助10
7秒前
8秒前
qiqiqi发布了新的文献求助10
9秒前
9秒前
碧蓝世界完成签到 ,获得积分10
9秒前
科研通AI2S应助Hammery采纳,获得10
10秒前
爱学习的小张完成签到,获得积分10
10秒前
10秒前
隐形曼青应助dyy123采纳,获得10
11秒前
归尘发布了新的文献求助10
11秒前
快乐滑板应助沉静野狼采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513