亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助秉烛游采纳,获得10
1分钟前
xiw完成签到,获得积分10
2分钟前
2分钟前
秉烛游完成签到,获得积分10
2分钟前
2分钟前
秉烛游发布了新的文献求助10
2分钟前
科研那些年完成签到,获得积分10
2分钟前
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
2分钟前
可爱的函函应助cheesy采纳,获得10
3分钟前
Londidi关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
小二郎应助顶刊收割机采纳,获得10
3分钟前
4分钟前
cheesy发布了新的文献求助10
4分钟前
金钰贝儿应助cheesy采纳,获得10
4分钟前
4分钟前
lanxinyue应助科研通管家采纳,获得10
4分钟前
小蘑菇应助fleeper采纳,获得10
4分钟前
5分钟前
5分钟前
过时的电灯胆完成签到,获得积分10
6分钟前
6分钟前
6分钟前
fleeper发布了新的文献求助10
6分钟前
6分钟前
啊呜发布了新的文献求助10
6分钟前
Ava应助fleeper采纳,获得10
7分钟前
搜集达人应助九九采纳,获得10
7分钟前
良辰完成签到,获得积分10
7分钟前
8分钟前
likemangren发布了新的文献求助10
8分钟前
xiaoshoujun完成签到,获得积分10
8分钟前
郗妫完成签到,获得积分10
8分钟前
likemangren完成签到,获得积分10
9分钟前
xz完成签到 ,获得积分10
9分钟前
9分钟前
九九发布了新的文献求助10
9分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790439
关于积分的说明 7795316
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159