亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
13秒前
pepper完成签到,获得积分20
44秒前
54秒前
飞快的孱发布了新的文献求助10
1分钟前
pepper发布了新的文献求助10
1分钟前
标致的泥猴桃完成签到,获得积分10
1分钟前
笨笨山芙完成签到 ,获得积分10
1分钟前
CH完成签到 ,获得积分10
1分钟前
李佳倩完成签到 ,获得积分10
2分钟前
阿狸完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
Koala04完成签到,获得积分10
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
飞快的孱发布了新的文献求助10
3分钟前
3分钟前
jitianxing发布了新的文献求助10
3分钟前
3分钟前
4分钟前
科研通AI5应助jitianxing采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
6分钟前
forest完成签到,获得积分10
6分钟前
6分钟前
jitianxing发布了新的文献求助10
7分钟前
vbnn完成签到 ,获得积分10
7分钟前
冷傲半邪完成签到,获得积分10
7分钟前
无幻完成签到 ,获得积分10
7分钟前
松松完成签到 ,获得积分10
7分钟前
7分钟前
CES_SH完成签到,获得积分10
7分钟前
数乱了梨花完成签到 ,获得积分0
8分钟前
已知中的未知完成签到 ,获得积分10
8分钟前
8分钟前
袁梦发布了新的文献求助10
8分钟前
科研通AI6应助袁梦采纳,获得10
9分钟前
上官若男应助马良采纳,获得10
9分钟前
贰鸟完成签到,获得积分0
9分钟前
9分钟前
科研通AI5应助jitianxing采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582451
求助须知:如何正确求助?哪些是违规求助? 4000198
关于积分的说明 12382246
捐赠科研通 3675167
什么是DOI,文献DOI怎么找? 2025731
邀请新用户注册赠送积分活动 1059367
科研通“疑难数据库(出版商)”最低求助积分说明 946069