亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nooooorae应助Harbeth采纳,获得10
9秒前
石中酒完成签到 ,获得积分10
24秒前
56秒前
56秒前
勇猛的小qin完成签到 ,获得积分10
57秒前
Velvet完成签到,获得积分10
1分钟前
大模型应助Takahara2000采纳,获得10
1分钟前
万能图书馆应助Planck采纳,获得10
1分钟前
JamesPei应助Takahara2000采纳,获得10
1分钟前
Akim应助昏睡的樱采纳,获得10
1分钟前
duan完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Planck发布了新的文献求助10
2分钟前
浮游应助Takahara2000采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Takahara2000完成签到,获得积分10
2分钟前
昏睡的樱发布了新的文献求助10
2分钟前
大模型应助lin采纳,获得10
3分钟前
Jasper应助Planck采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
昏睡的樱完成签到,获得积分10
3分钟前
3分钟前
冷静书白发布了新的文献求助10
3分钟前
小蘑菇应助冷静书白采纳,获得10
4分钟前
4分钟前
4分钟前
lin发布了新的文献求助10
4分钟前
Planck发布了新的文献求助10
4分钟前
lin完成签到,获得积分10
5分钟前
核桃应助cc采纳,获得10
5分钟前
英俊的铭应助可乐采纳,获得10
5分钟前
cc完成签到,获得积分10
5分钟前
英俊的铭应助研友_ZlPDdZ采纳,获得10
5分钟前
木齐Jay完成签到,获得积分10
5分钟前
隋黎完成签到 ,获得积分10
5分钟前
6分钟前
可乐发布了新的文献求助10
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449894
求助须知:如何正确求助?哪些是违规求助? 4557860
关于积分的说明 14265036
捐赠科研通 4481056
什么是DOI,文献DOI怎么找? 2454673
邀请新用户注册赠送积分活动 1445471
关于科研通互助平台的介绍 1421295