Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13981592626发布了新的文献求助10
刚刚
13981592626发布了新的文献求助10
刚刚
13981592626发布了新的文献求助10
刚刚
13981592626发布了新的文献求助10
刚刚
零零发布了新的文献求助10
1秒前
mirror关注了科研通微信公众号
3秒前
4秒前
调皮小蘑菇完成签到,获得积分10
7秒前
谢志超完成签到,获得积分10
7秒前
谢鸿宇完成签到,获得积分10
9秒前
9秒前
玺白白发布了新的文献求助10
9秒前
科研通AI5应助soyorin采纳,获得10
9秒前
10秒前
10秒前
13秒前
yy应助爱听歌的书双采纳,获得10
13秒前
科研通AI5应助迅速的鸽子采纳,获得10
13秒前
COCONUT完成签到,获得积分10
14秒前
DS发布了新的文献求助10
14秒前
隐形的谷槐完成签到 ,获得积分10
15秒前
llll发布了新的文献求助10
16秒前
lwt完成签到,获得积分20
17秒前
义气千风完成签到,获得积分10
17秒前
壮观安寒完成签到 ,获得积分10
18秒前
充电宝应助HP采纳,获得20
18秒前
所所应助执着的导师采纳,获得10
19秒前
21秒前
21秒前
胡萝卜叶子完成签到,获得积分10
24秒前
24秒前
25秒前
王子倩完成签到,获得积分10
25秒前
无敌脉冲黄桃完成签到,获得积分20
25秒前
25秒前
27秒前
香飘飘发布了新的文献求助10
27秒前
JamesPei应助追寻续采纳,获得10
28秒前
28秒前
王子倩发布了新的文献求助10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995