Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白熊发布了新的文献求助20
刚刚
丘比特应助耿耿采纳,获得10
1秒前
自然的绿兰发布了新的文献求助150
1秒前
bingqing发布了新的文献求助10
2秒前
2秒前
3秒前
在水一方应助搞怪十八采纳,获得10
3秒前
3秒前
XIXI完成签到,获得积分20
3秒前
3秒前
张瑜发布了新的文献求助10
4秒前
小蘑菇应助第七个星球采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
霍师傅发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
Galaxy发布了新的文献求助10
8秒前
8秒前
8秒前
自觉凌蝶完成签到 ,获得积分10
8秒前
8秒前
tojobbb发布了新的文献求助10
9秒前
CN00016发布了新的文献求助10
9秒前
9秒前
affff完成签到 ,获得积分10
9秒前
9秒前
9秒前
Lucas应助wz采纳,获得10
9秒前
10秒前
10秒前
11秒前
11秒前
追风舞尘完成签到,获得积分20
11秒前
秀儿发布了新的文献求助10
11秒前
12秒前
沐易发布了新的文献求助10
12秒前
今后应助uncle采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996