Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助Hua采纳,获得10
刚刚
伶俐冷玉发布了新的文献求助20
刚刚
1秒前
1秒前
1秒前
bkagyin应助xiuuu采纳,获得20
1秒前
zll完成签到,获得积分10
1秒前
2秒前
2秒前
五颜六色的白完成签到,获得积分10
2秒前
面壁思过应助yzh1129采纳,获得10
2秒前
短短大王发布了新的文献求助10
2秒前
lyp7028发布了新的文献求助10
2秒前
帅气善斓发布了新的文献求助20
3秒前
饱满的鸡翅完成签到,获得积分10
3秒前
3秒前
天边一阵风完成签到,获得积分10
4秒前
酷酷的小鸽子应助Reyi采纳,获得20
4秒前
科研通AI6应助小白采纳,获得10
4秒前
H_发布了新的文献求助10
4秒前
斯文败类应助xujingyi采纳,获得10
4秒前
二呆完成签到 ,获得积分10
4秒前
5秒前
搜集达人应助您疼肚采纳,获得10
5秒前
鳗鱼柚子完成签到 ,获得积分10
5秒前
AN1AN发布了新的文献求助25
5秒前
zizi完成签到,获得积分10
5秒前
慕青应助研二发核心采纳,获得10
6秒前
彭于晏应助夏末采纳,获得10
6秒前
6秒前
阿刁完成签到,获得积分10
7秒前
hh发布了新的文献求助10
7秒前
危机的仰发布了新的文献求助10
8秒前
LX完成签到,获得积分10
8秒前
端庄一刀发布了新的文献求助10
9秒前
9秒前
思川发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049