Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyz发布了新的文献求助10
4秒前
zlw121完成签到 ,获得积分10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
xzy998应助努力采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
changping应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得30
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
TAT完成签到 ,获得积分10
6秒前
wwz应助科研通管家采纳,获得10
6秒前
火星上惜天完成签到 ,获得积分10
7秒前
7秒前
yekindar完成签到,获得积分10
11秒前
Aurora完成签到 ,获得积分10
12秒前
丘比特应助风中诗蕊采纳,获得10
12秒前
13秒前
13秒前
小曹完成签到,获得积分10
13秒前
orixero应助秋子david采纳,获得10
16秒前
ly关注了科研通微信公众号
16秒前
17秒前
小杭76应助能干靖儿采纳,获得10
17秒前
ChenWen完成签到,获得积分10
17秒前
guaishou完成签到,获得积分10
18秒前
ren完成签到,获得积分20
19秒前
哈哈给哈关注了科研通微信公众号
19秒前
单薄的夜南应助陈麦子采纳,获得10
20秒前
清漪发布了新的文献求助10
20秒前
大力半鬼完成签到,获得积分10
25秒前
夕夜发布了新的文献求助10
25秒前
26秒前
千尺焰完成签到,获得积分10
27秒前
cheese完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298580
求助须知:如何正确求助?哪些是违规求助? 4447072
关于积分的说明 13841540
捐赠科研通 4332544
什么是DOI,文献DOI怎么找? 2378222
邀请新用户注册赠送积分活动 1373488
关于科研通互助平台的介绍 1339077