Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving

运动规划 强化学习 计算机科学 交叉口(航空) 运动(物理) 人工智能 模糊逻辑 理论(学习稳定性) 路径(计算) 弹道 控制工程 模拟 工程类 机器学习 机器人 物理 航空航天工程 程序设计语言 天文
作者
Long Chen,Xuemin Hu,Bo Tang,Yu Cheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2966-2977 被引量:56
标识
DOI:10.1109/tits.2020.3025671
摘要

Motion planning is one of the most significant part in autonomous driving. Learning-based motion planning methods attract many researchers’ attention due to the abilities of learning from the environment and directly making decisions from the perception. The deep Q-network, as a popular reinforcement learning method, has achieved great progress in autonomous driving, but these methods seldom use the global path information to handle the issue of directional planning such as making a turning at an intersection since the agent usually learns driving strategies only by the designed reward function, which is difficult to adapt to the driving scenarios of urban roads. Moreover, different motion commands such as the steering wheel and accelerator are associated with each other from classic Q-networks, which easily leads to an unstable prediction of the motion commands since they are independently controlled in a practical driving system. In this paper, a conditional deep Q-network for directional planning is proposed and applied in end-to-end autonomous driving, where the global path is used to guide the vehicle to drive from the origination to the destination. To handle the dependency of different motion commands in Q-networks, we take use of the idea of fuzzy control and develop a defuzzification method to improve the stability of predicting the values of different motion commands. We conduct comprehensive experiments in the CARLA simulator and compare our method with the state-of-the-art methods. Experimental results demonstrate the proposed method achieves better learning performance and driving stability performance than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酷波er应助温柔的戎采纳,获得10
刚刚
Duang完成签到,获得积分20
刚刚
刚刚
柒月发布了新的文献求助10
刚刚
刚刚
朴素友安完成签到 ,获得积分10
刚刚
刚刚
bkagyin应助Linming采纳,获得10
1秒前
饱满的煎饼完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
fff完成签到,获得积分10
3秒前
丘比特应助坚定如南采纳,获得10
4秒前
鲤鱼山人发布了新的文献求助10
4秒前
4秒前
囡囡发布了新的文献求助10
5秒前
2810527600发布了新的文献求助10
5秒前
AWE发布了新的文献求助10
5秒前
jojo144发布了新的文献求助10
5秒前
宋宋发布了新的文献求助10
5秒前
泡泡虾发布了新的文献求助10
6秒前
着急的莫言完成签到,获得积分10
6秒前
甜橙汁发布了新的文献求助10
6秒前
nancylan应助六碳烷采纳,获得10
6秒前
cici发布了新的文献求助10
7秒前
7秒前
AbOO完成签到,获得积分10
7秒前
梧桐完成签到,获得积分10
7秒前
像只猫完成签到,获得积分10
7秒前
珂珂发布了新的文献求助10
7秒前
8秒前
落后的道之完成签到,获得积分10
8秒前
9秒前
王雅发布了新的文献求助10
9秒前
害羞聋五发布了新的文献求助10
9秒前
liu完成签到,获得积分10
9秒前
浅蓝完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887