Using yeast to sustainably remediate and extract heavy metals from waste waters

硫化物 环境科学 Mercury(编程语言) 硫化氢 化学 废物管理 生物群 环境化学 生态学 硫黄 生物 计算机科学 工程类 有机化学 程序设计语言
作者
George L. Sun,Erin. E. Reynolds,Angela M. Belcher
出处
期刊:Nature sustainability [Springer Nature]
卷期号:3 (4): 303-311 被引量:89
标识
DOI:10.1038/s41893-020-0478-9
摘要

Our demand for electronic goods and fossil fuels has challenged our ecosystem with contaminating amounts of heavy metals, causing numerous water sources to become polluted. To counter heavy-metal waste, industry has relied on a family of physicochemical processes, with chemical precipitation being one of the most commonly used. However, the disadvantages of chemical precipitation are vast, including the generation of secondary waste, technical handling of chemicals and need for complex infrastructures. To circumvent these limitations, biological processes to naturally manage waste have been sought. Here, we show that yeast can act as a biological alternative to traditional chemical precipitation by controlling naturally occurring production of hydrogen sulfide (H2S). Sulfide production was harnessed by controlling the sulfate assimilation pathway, where strategic knockouts and culture conditions generated H2S from 0 to over 1,000 ppm (~30 mM). These sulfide-producing yeasts were able to remove mercury, lead and copper from real-world samples taken from the Athabasca oil sands. More so, yeast surface display of biomineralization peptides helped control for size distribution and crystallinity of precipitated metal sulfide nanoparticles. Altogether, this yeast-based platform not only removes heavy metals but also offers a platform for metal re-extraction through precipitation of metal sulfide nanoparticles. Physicochemical treatments of heavy-metal pollution in waste water have several environmental and structural disadvantages. This Article shows that sulfide-producing yeasts are able to remove mercury, lead and copper from real-world water samples and offer a platform for metal re-extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
aliuliu关注了科研通微信公众号
3秒前
3秒前
3秒前
3秒前
无限桐发布了新的文献求助10
3秒前
天天快乐应助灵巧语山采纳,获得10
3秒前
3秒前
仁者发布了新的文献求助10
3秒前
夕云发布了新的文献求助10
5秒前
5秒前
科小辉完成签到,获得积分10
6秒前
可爱的函函应助lc339采纳,获得10
6秒前
6秒前
尤问筠完成签到,获得积分10
6秒前
勤奋的缘郡完成签到,获得积分20
6秒前
Y123发布了新的文献求助10
7秒前
美丽依波发布了新的文献求助10
7秒前
今后应助张瑞彬采纳,获得10
7秒前
感谢大佬发布了新的文献求助10
8秒前
敏感手套完成签到,获得积分10
8秒前
英勇白晴发布了新的文献求助10
9秒前
10秒前
别信同学完成签到 ,获得积分10
10秒前
可爱的涵菡完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
14秒前
辛勤的果粒多完成签到,获得积分10
14秒前
15秒前
16秒前
Frankwei发布了新的文献求助10
16秒前
科研通AI2S应助舒心的雨双采纳,获得10
16秒前
momo发布了新的文献求助10
17秒前
bio给bio的求助进行了留言
18秒前
禾禾关注了科研通微信公众号
18秒前
19秒前
微笑的涛发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706