材料科学
非西汀
碳纳米管
分子印迹
检出限
选择性
纳米材料
化学工程
多孔性
电化学
复合数
分子印迹聚合物
纳米技术
电极
化学
复合材料
色谱法
有机化学
催化作用
物理化学
工程类
抗氧化剂
类黄酮
作者
Xue Ma,Xiaolong Tu,Feng Gao,Yu Xie,Xigen Huang,Carlos Fernández,Fengli Qu,Guangbin Liu,Limin Lu,Yongfang Yu
标识
DOI:10.1016/j.snb.2020.127815
摘要
In this work, a highly selective and sensitive electrochemical sensor based on hierarchical porous MXene/amino carbon nanotubes (MXene/NH2-CNTs) composite and molecularly imprinted polymer (MIP) was developed for fisetin detection. The porous MXene/NH2-CNTs films were fabricated by self-assembly of negatively charged Ti3C2Tx MXene flakes and positively charged NH2-CNTs. The utilization of conductive NH2-CNTs as interlayer spacers efficiently inhibited the aggregation of MXene flakes and formed a well-defined porous structure, as a result of increasing the effective surface area, an enhancement of the electrical conductivity and electrocatalytic activity was observed. This sensor takes advantages of molecularly imprinted technique and MXene/NH2-CNTs nanomaterials to achieve high selectivity and high sensitivity for the determination of fisetin. The factors that affect sensor response were studied and optimized. The as-prepared molecular imprinting sensor, under the optimized conditions, presented a good linear relationship with the fisetin concentration ranging from 0.003 μmol L−1 to 20.0 μmol L−1 with a limit of detection (LOD) of 1.0 nmol L−1. Besides, with favorable stability and selectivity, this newly developed sensor was utilized for the detection of fisetin in actual samples with satisfactory results.
科研通智能强力驱动
Strongly Powered by AbleSci AI