Business networks and organizational resilience capacity in the digital age during COVID-19: A perspective utilizing organizational information processing theory

业务 弹性(材料科学) 2019年冠状病毒病(COVID-19) 知识管理 信息处理理论 透视图(图形) 信息处理 心理学 计算机科学 认知心理学 医学 物理 人工智能 热力学 疾病 病理 传染病(医学专业)
作者
Xuemei Xie,Yonghui Wu,Daniel Palacios‐Marqués,Samuel Ribeiro‐Navarrete
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:177: 121548-121548 被引量:122
标识
DOI:10.1016/j.techfore.2022.121548
摘要

Based on organizational information processing theory (OIPT), this study examines how and when business networks exert a positive influence on firms’ organizational resilience capacity. Using data collected from 409 Chinese manufacturing firms during the COVID-19 pandemic, and by disaggregating business networks into two dimensions—network breadth and network depth—our findings show, firstly, that both network breadth and network depth are positively correlated to the organizational resilience capacity of firms; secondly, that these relationships are mediated by firms’ ambidextrous learning; and thirdly, that the positive effects of network breadth and network depth on organizational resilience capacity are stronger when the firms’ digital technology levels are higher. Furthermore, through additional analysis, we find that the positive impact of business networks on organizational resilience capacity is stronger for non-state-owned enterprises (non-SOEs) than it is for SOEs, and also that the moderating effect of digital technology on the relationship between business networks and organizational resilience capacity is greater for non-SOEs than it is for SOEs. These findings provide new insight into how a firm's business network, in combination with its ambidextrous learning and level of digital technology, affects its organizational resilience capacity development, which helps it survive a crisis for future sustainable development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyj发布了新的文献求助10
刚刚
刚刚
勤奋幻柏完成签到,获得积分10
1秒前
东东呀发布了新的文献求助10
1秒前
MOTOMORI发布了新的文献求助10
2秒前
道阻且长发布了新的文献求助10
2秒前
bkagyin应助Drliu采纳,获得10
3秒前
3秒前
3秒前
深情安青应助景XN采纳,获得10
3秒前
4秒前
麻雀发布了新的文献求助10
4秒前
Qianbaor68应助聪慧的凝丹采纳,获得10
4秒前
SUNLE发布了新的文献求助10
4秒前
SciGPT应助道阻且长采纳,获得10
5秒前
田様应助yn采纳,获得10
5秒前
5秒前
十七完成签到 ,获得积分10
5秒前
6秒前
英姑应助未来大牛采纳,获得10
6秒前
踏实无敌应助炙热灵采纳,获得20
7秒前
Hang发布了新的文献求助10
7秒前
7秒前
鱼鱼发布了新的文献求助10
10秒前
喜之郎完成签到,获得积分10
10秒前
wangji_2017完成签到,获得积分10
11秒前
小菜一碟2021完成签到,获得积分10
11秒前
暮光微凉发布了新的文献求助10
11秒前
111发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
科研通AI5应助MOTOMORI采纳,获得10
15秒前
77完成签到 ,获得积分10
15秒前
爱洗澡的鱼完成签到 ,获得积分10
16秒前
liu完成签到,获得积分10
16秒前
暮光微凉完成签到,获得积分10
16秒前
852应助nieanicole采纳,获得10
16秒前
彭于晏应助卢浩采纳,获得10
16秒前
ran完成签到 ,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734838
求助须知:如何正确求助?哪些是违规求助? 3278737
关于积分的说明 10011382
捐赠科研通 2995434
什么是DOI,文献DOI怎么找? 1643431
邀请新用户注册赠送积分活动 781171
科研通“疑难数据库(出版商)”最低求助积分说明 749290