焊接
材料科学
航空航天
超声波焊接
铝
搅拌摩擦焊
粘接
阳极氧化
复合材料
机械工程
作者
Renangi Sandeep,M. Manikandan
标识
DOI:10.1177/09544089211073027
摘要
In the twenty-first century, the application of carbon fiber reinforced polymer (CFRP) materials in the vehicle industry are growing rapidly due to lightweight, high specific strength, and elasticity. In the automobile and aerospace industries, CFRP needs to be joined with metals to build complete structures. The demand for hybrid structures has prompted research into the combination of CFRP and metals in manufacturing. Aluminium and CFRP structures combine the mechanical properties of aluminium with the superior physical and chemical properties of CFRP. However, joining dissimilar materials is often challenging to achieve. Various joining technologies are developed to produce hybrid joints of CFRP, and aluminium alloys include conventional adhesives, mechanical and thermal joining technologies. In this review article, an extensive review was carried out on the thermal joining technologies include laser welding, friction-based welding technologies, ultrasonic welding, and induction welding processes. The article primarily focused on the current knowledge and process development of these technologies in fabricating dissimilar aluminium and CFRP structures. Besides, according to Industry 4.0 requirements, additive manufacturing-based techniques to fabricate hybrid structures are presented. Finally, this article also addressed the various improvements for the future development of these joining technologies. Ultrasonic welding yields the maximum shear strength among the various hybrid joining technologies due to lower heat input. On the other hand, laser welding produces higher heat input, which deteriorates the mechanical performance of the hybrid joints. Surface pretreatments on material surfaces prior to joining showed a significant effect on joint shear strength. Surface modification using anodizing is considered an optimal method to improve wettability, increasing mechanical interlocking phenomena.
科研通智能强力驱动
Strongly Powered by AbleSci AI