血管生成
前列腺癌
巨噬细胞
医学
癌症研究
内科学
内分泌学
前列腺
肿瘤微环境
肿瘤进展
癌症
生物
生物化学
体外
作者
Pei Liang,Susanne M. Henning,Tristan Grogan,David Elashoff,Huihui Ye,Pinchas Cohen,William J. Aronson
标识
DOI:10.1038/s41391-021-00440-2
摘要
The antiprostate cancer effects of dietary ω-3 fatty acids (FAs) were previously found to be dependent on host G-protein coupled receptor 120 (GPR120). Using an orthotopic tumor model and an ex-vivo model of bone marrow derived M2-like macrophages, we sought to determine if ω-3 FAs inhibit angiogenesis and activate T-cells, and if these effects are dependent on GPR120. Gausia luciferase labeled MycCaP prostate cancer cells (MycCaP-Gluc) were injected into the anterior prostate lobe of FVB mice. After established tumors were confirmed by blood luminescence, mice were fed an ω-3 or ω-6 diet. Five weeks after tumor injection, tumor weight, immune cell infiltration and markers of angiogenesis were determined. An ex-vivo co-culture model of bone marrow derived M2-like macrophages from wild-type or GPR120 knockout mice with MycCap prostate cancer cells was used to determine if docosahexanoic acid (DHA, ω-3 FA) inhibition of angiogenesis and T-cell activation is dependent on macrophage GPR120. Feeding an ω-3 diet significantly reduced orthotopic MycCaP-Gluc tumor growth relative to an ω-6 diet. Tumors from the ω-3 group had decreased M2-like macrophage infiltration and decreased expression of angiogenesis factors. DHA significantly inhibited M2 macrophage-induced endothelial tube formation and reversed M2 macrophage-induced T-cell suppression, and these DHA effects were mediated, in part, by M2 macrophage GPR120. Omega-3 FAs delayed orthotopic tumor growth, inhibited M2-like macrophage tumor infiltration, and inhibited M2-like macrophage-induced angiogenesis and T-cell suppression. Given the central role of M2-like macrophages in prostate cancer progression, GPR120-dependent ω-3 FA inhibition of M2-like macrophages may play an important role in prostate cancer therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI