Life cycle assessment of soluble lead redox flow battery

流动电池 铅酸蓄电池 电池(电) 氧化还原 储能 容量损失 汽车蓄电池 充电周期 工艺工程 材料科学 环境科学 化学 功率(物理) 工程类 无机化学 物理 量子力学
作者
Emmanuel Shittu,Suman Rathod,M. K. Ravikumar,Ashok Shukla,Guangling Zhao,Satish Patil,Jennifer Baker
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:337: 130503-130503 被引量:11
标识
DOI:10.1016/j.jclepro.2022.130503
摘要

Energy storage deployment for stationary applications is expected to grow in the next decade, and there is a requirement for storage solutions that minimise materials demand. Soluble lead redox flow battery is a type of flow battery in the early phase of design with the potential for a lower cost than other flow battery solutions. This study presents the first cradle-to-gate life cycle assessment of the soluble lead redox flow battery. The ReCiPe2016 method was used to assess the 18 midpoint impact categories for 1 kWh of energy storage capacity. The assessed environmental impact categories were compared with the most advanced flow battery, the vanadium redox flow battery, and other commercially available stationary batteries; lithium-ion batteries, lead acid batteries, and sodium-ion batteries. The most significant environmental impacts of the soluble lead redox flow battery are associated with power subsystem components; stainless-steel end plates (a key component of the stack frame), and polymethyl methacrylate bipolar and monopolar frames. Despite their non-optimised technology, the environmental impacts of the soluble lead redox flow battery show promising results compared to other stationary storage applications exhibiting one of the lowest depletion of material resources of all compared batteries, including lithium-ion batteries, lead acid batteries, and sodium-ion batteries. This is even more evident at higher energy to power ratios. Increasing the energy storage capacity of the soluble lead redox flow battery, and the optimisation of power subsystem components can further improve the environmental performance of the soluble lead redox flow battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到 ,获得积分10
1秒前
水shui完成签到,获得积分10
1秒前
王子云发布了新的文献求助10
1秒前
啊圣诞袜应助cloud采纳,获得10
1秒前
英姑应助舒舒采纳,获得10
1秒前
2秒前
Zhong发布了新的文献求助10
2秒前
3秒前
耍酷的小土豆完成签到,获得积分20
3秒前
我是老大应助sch采纳,获得10
3秒前
donfern完成签到,获得积分10
3秒前
4秒前
Yang_Yuting完成签到 ,获得积分10
4秒前
毛豆应助狂野绿竹采纳,获得10
5秒前
隐形曼青应助124332采纳,获得10
5秒前
今后应助124332采纳,获得10
5秒前
小马甲应助124332采纳,获得10
5秒前
Ava应助小点点采纳,获得10
5秒前
桐桐应助124332采纳,获得10
6秒前
bkagyin应助124332采纳,获得10
6秒前
所所应助124332采纳,获得10
6秒前
NexusExplorer应助124332采纳,获得10
6秒前
Lucas应助124332采纳,获得10
6秒前
善学以致用应助124332采纳,获得30
6秒前
JamesPei应助124332采纳,获得10
6秒前
6秒前
7秒前
8秒前
大个应助预则立采纳,获得10
8秒前
8秒前
Zhong完成签到,获得积分20
9秒前
9秒前
冲鸭完成签到,获得积分10
9秒前
萌~Lucky发布了新的文献求助10
11秒前
11秒前
吃玉米长大的马铃薯关注了科研通微信公众号
12秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302046
求助须知:如何正确求助?哪些是违规求助? 2936566
关于积分的说明 8478154
捐赠科研通 2610354
什么是DOI,文献DOI怎么找? 1425128
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646465