深度学习
荷电状态
计算机科学
电池(电)
钥匙(锁)
人工智能
机器学习
健康状况
领域(数学)
构造(python库)
电荷(物理)
锂(药物)
国家(计算机科学)
储能
纳米技术
材料科学
物理
算法
心理学
功率(物理)
数学
精神科
程序设计语言
纯数学
量子力学
计算机安全
作者
Kai Luo,Xiang Chen,Huiru Zheng,Zhicong Shi
标识
DOI:10.1016/j.jechem.2022.06.049
摘要
In the field of energy storage, it is very important to predict the state of charge and the state of health of lithium-ion batteries. In this paper, we review the current widely used equivalent circuit and electrochemical models for battery state predictions. The review demonstrates that machine learning and deep learning approaches can be used to construct fast and accurate data-driven models for the prediction of battery performance. The details, advantages, and limitations of these approaches are presented, compared, and summarized. Finally, future key challenges and opportunities are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI