A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays

超级电容器 石墨烯 材料科学 纳米技术 化学气相沉积 等离子体增强化学气相沉积 电极 电解质 电容 表面改性 光电子学 化学工程 化学 工程类 物理化学
作者
Surjit Sahoo,Gopinath Sahoo,Sang Mun Jeong,Chandra Sekhar Rout
出处
期刊:Journal of energy storage [Elsevier]
卷期号:53: 105212-105212 被引量:54
标识
DOI:10.1016/j.est.2022.105212
摘要

Vertical graphene (VG) or vertical graphene arrays have attracted the attention of researchers in recent years, as electrode materials for supercapacitor application due to its unique properties. Although significant progress has been made in growth and supercapacitor application of VG, still many recent developments not yet been reviewed. By attuning the growth of the graphene from horizontal to vertical, its electronic band structure and bandgap can be controlled which is evident from the theoretical and experimental findings. In VG electrolyte ions could smoothly transport through regions of one-dimensional structures and access the electroactive material's surface, and electrons can successfully move in the highly conductive VG to reach the current collector. Furthermore, high surface area can also accelerate other kinetic reactions and the one dimensional structure diminishes strain through volume expansion and contraction. These superiority make VG electrodes captivating in various future energy storage devices including lithium-ion batteries and supercapacitors. Herein, the importance of the structure, overview of various plasma enhanced chemical vapor deposition (PECVD) method of synthesis and the progress in bare and hybrid VG structures are reviewed. Afterward, the important strategies to enhance the energy storage performance by changing the morphology, surface engineering/functionalization and doping of VG are discussed. Furthermore, the challenges and future perspectives for achieving good structural quality with outstanding capacitance performance are listed. This review summarises the importance of vertical graphene structure, PECVD growth and mechanism of VG with recent progress and application towards efficient supercapacitor electrode material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抽烟不完成签到 ,获得积分10
刚刚
山上完成签到,获得积分10
2秒前
聪明摩托发布了新的文献求助10
2秒前
3秒前
3秒前
珍珠爱学习完成签到,获得积分10
4秒前
乐乐应助聪慧仇天采纳,获得10
4秒前
4秒前
小凯完成签到,获得积分10
4秒前
NATURECATCHER完成签到,获得积分10
5秒前
5秒前
星辰大海应助阿吖采纳,获得10
6秒前
yyy完成签到 ,获得积分10
6秒前
小二郎应助斯文墨镜采纳,获得10
7秒前
7秒前
8秒前
早起的懒羊羊完成签到,获得积分10
8秒前
freedom完成签到,获得积分10
8秒前
扁舟子完成签到,获得积分10
9秒前
勤奋小张发布了新的文献求助10
9秒前
娃哈哈发布了新的文献求助10
9秒前
清秀一曲应助最最采纳,获得10
10秒前
王艺霖完成签到 ,获得积分10
10秒前
搜集达人应助B314ZJH采纳,获得10
10秒前
cocolu应助pathway采纳,获得10
10秒前
11秒前
在水一方应助Toooo采纳,获得10
12秒前
13秒前
14秒前
14秒前
jl发布了新的文献求助20
14秒前
空古悠浪完成签到,获得积分10
15秒前
15秒前
桐桐应助奶酪芝士采纳,获得10
15秒前
16秒前
17秒前
靖123456发布了新的文献求助10
17秒前
Boss东发布了新的文献求助10
18秒前
哎呦喂发布了新的文献求助30
18秒前
斯文墨镜发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159