Two-sided Disassembly Line Balancing Problem with Sequence-Dependent Setup Time: A Constraint Programming Model and Artificial Bee Colony Algorithm

计算机科学 工作站 序列(生物学) 人工蜂群算法 元启发式 数学优化 算法 直线(几何图形) 约束规划 整数规划 约束(计算机辅助设计) 线性规划
作者
Zeynel Abidin Çil,Damla Kizilay,Zixiang Li,Hande Öztop
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:: 117529-117529
标识
DOI:10.1016/j.eswa.2022.117529
摘要

• TDLBP-SDST is handled for the first time in the literature. • The proposed CP model for the TDLBP obtains the optimal results. • The MILP models and CP approach are proposed to solve the TDLBP-SDST. • Effective four metaheuristic approaches are also developed for the TDLBP-SDST. • TDLBP-SDST aims to minimize mated workstations and workstations, respectively. The large-size products can allow workers to perform tasks on both sides of the line. Hence, a two-sided disassembly line is preferred to ensure several advantages, such as a shorter line. The two-sided disassembly line balancing problem (TDLBP) is relatively new in the literature. This study considers the two-sided disassembly line balancing problem with sequence-dependent setup time (TDLBP-SDST) to reflect the real practice better, as sequence-dependent setup times may exist between tasks in many real-life applications. To the authors’ best knowledge, sequence-dependent setup time has not been considered for the TDLBP in the current literature. The proposed problem creates a more complicated problem. Therefore, proposing effective solution techniques is more critical for obtaining better results. This study proposes two new mixed-integer linear programming models and a novel constraint programming (CP) model to define and solve the TDLBP-SDST. A genetic algorithm, an artificial bee colony algorithm, and the improved versions of these two algorithms are also developed to solve the large-size problems due to the NP-hardness of the TDLBP-SDST. Furthermore, a novel CP model is proposed for the standard TDLBP without considering sequence-dependent setup times. Initially, we compare the performance of the proposed CP model to those of the previous state-of-the-art methods in the literature for the TDLBP without sequence-dependent setup time. The computational results show that the proposed CP model outperforms all the other solution methods and reports the best-known results for all existing benchmark instances for the TDLBP. Then, we present the computational results of the proposed models and algorithms for the TDLBP-SDST. Computational study on a comprehensive set of generated instances indicates that the proposed solution methods effectively solve the TDLBP-SDST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞羽发布了新的文献求助20
1秒前
CodeCraft应助妙漉采纳,获得10
2秒前
爆米花应助灵巧的忻采纳,获得10
2秒前
安谣完成签到,获得积分10
2秒前
2秒前
Hello应助hu采纳,获得10
3秒前
小通通完成签到,获得积分10
3秒前
木木康完成签到,获得积分10
4秒前
5秒前
cc完成签到,获得积分10
5秒前
音悦台发布了新的文献求助10
5秒前
6秒前
力劈华山完成签到,获得积分10
7秒前
8秒前
8秒前
jj发布了新的文献求助10
8秒前
1111发布了新的文献求助10
9秒前
9秒前
丘比特应助secret采纳,获得10
9秒前
万能图书馆应助olivia采纳,获得10
9秒前
无花果应助飞羽采纳,获得10
9秒前
10秒前
隐形曼青应助迷人的映雁采纳,获得10
10秒前
10秒前
轻轻完成签到 ,获得积分10
10秒前
10秒前
小马甲应助Huang采纳,获得10
10秒前
Angel发布了新的文献求助10
11秒前
龙井茶完成签到,获得积分10
11秒前
12秒前
李白发布了新的文献求助10
12秒前
Owen应助典雅的静采纳,获得10
12秒前
13秒前
13秒前
生技BT发布了新的文献求助10
14秒前
可靠觅珍应助铁板棉花糖采纳,获得20
14秒前
凡夕木叶发布了新的文献求助10
16秒前
16秒前
雷行云发布了新的文献求助30
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326