A fidelity‐embedded learning for metal artifact reduction in dental CBCT

人工智能 锥束ct 投影(关系代数) 计算机科学 成像体模 计算机视觉 工件(错误) 忠诚 还原(数学) 衰减 计算机断层摄影术 光学 算法 数学 医学 放射科 物理 几何学 电信
作者
Hyoung Suk Park,Jin Keun Seo,Chang Min Hyun,Sung‐Min Lee,Kiwan Jeon
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5195-5205 被引量:14
标识
DOI:10.1002/mp.15720
摘要

Abstract Purpose Dental cone‐beam computed tomography (CBCT) has been increasingly used for dental and maxillofacial imaging. However, the presence of metallic inserts, such as implants, crowns, and dental braces, violates the CT model assumption, which leads to severe metal artifacts in the reconstructed CBCT image, resulting in the degradation of diagnostic performance. In this study, we used deep learning to reduce metal artifacts. Methods The metal artifacts, appearing as streaks and shadows, are nonlocal and highly associated with various factors, including the geometry of metallic inserts, energy‐dependent attenuation, and energy spectrum of the incident X‐ray beam, making it difficult to learn their complicated structures directly. To provide a step‐by‐step environment in which deep learning can be trained, we propose an iterative learning approach in which the network at each iteration step learns the correction error caused by the previous network, while enforcing the data fidelity in the projection domain. To generate a realistic paired training dataset, metal‐free CBCT scans were collected from patients without metallic inserts, and then simulated metal projection data were added to generate the corresponding metal‐corrupted projection data. Results The feasibility of the proposed method was investigated in clinical metal‐affected CBCT scans, as well as simulated metal‐affected CBCT scans. The results show that the proposed method significantly reduces metal artifacts while preserving the morphological structures near metallic objects and outperforms direct image domain learning. Conclusion The proposed fidelity‐embedded learning can effectively reduce metal artifacts in dental CBCT compared with direct image domain learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孟要努力完成签到,获得积分10
2秒前
OAHCIL完成签到 ,获得积分10
3秒前
蓝胖胖蓝完成签到,获得积分10
6秒前
朴素赛凤完成签到 ,获得积分10
7秒前
孤海未蓝完成签到,获得积分10
9秒前
负责灵萱完成签到 ,获得积分10
9秒前
小蘑菇应助xsq采纳,获得10
15秒前
Cooper完成签到,获得积分10
15秒前
CipherSage应助陈少华采纳,获得10
17秒前
conanyangqun完成签到,获得积分10
17秒前
lu完成签到,获得积分10
20秒前
JevonCheung完成签到 ,获得积分10
22秒前
微水央央完成签到 ,获得积分10
23秒前
Grace完成签到 ,获得积分10
24秒前
HY完成签到,获得积分10
25秒前
忧郁问寒发布了新的文献求助10
25秒前
Gypsy发布了新的文献求助30
27秒前
冷傲机器猫完成签到,获得积分10
30秒前
yongzaizhuigan完成签到,获得积分0
30秒前
大力的诗蕾完成签到 ,获得积分10
33秒前
hchen完成签到 ,获得积分10
34秒前
吃猫的鱼完成签到,获得积分10
34秒前
幸福面包完成签到,获得积分10
36秒前
专注灵凡完成签到,获得积分10
37秒前
七子完成签到,获得积分10
39秒前
zzx396完成签到,获得积分10
40秒前
整齐的小霜完成签到,获得积分10
40秒前
舒适的天奇完成签到 ,获得积分10
41秒前
chuanfu完成签到,获得积分10
42秒前
段仁杰完成签到,获得积分10
42秒前
Anderson123完成签到,获得积分0
42秒前
Cassie完成签到,获得积分10
43秒前
Ganlou应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
Anderson732完成签到,获得积分10
43秒前
墨痕mohen完成签到,获得积分10
43秒前
Muhi完成签到,获得积分10
43秒前
43秒前
LL完成签到,获得积分10
44秒前
玲玲完成签到,获得积分10
45秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288485
求助须知:如何正确求助?哪些是违规求助? 2925900
关于积分的说明 8423645
捐赠科研通 2596928
什么是DOI,文献DOI怎么找? 1416770
科研通“疑难数据库(出版商)”最低求助积分说明 659507
邀请新用户注册赠送积分活动 641889