rGO functionalized (Ni,Fe)-OH for an efficient trifunctional catalyst in low-cost hydrogen generation via urea decomposition as a proxy anodic reaction

析氧 无机化学 催化作用 分解水 电解 制氢 电解质 电解水 化学 阳极 氢氧化物 碱性水电解 石墨烯 氧化物 纳米材料基催化剂 电催化剂 材料科学 化学工程 电化学 电极 纳米技术 有机化学 物理化学 光催化 工程类
作者
Nabeen K. Shrestha,Supriya A. Patil,Akbar I. Inamdar,Sunjung Park,Seungun Yeon,Giho Shin,Sangeun Cho,Hyungsang Kim,Hyunsik Im
出处
期刊:Dalton Transactions [The Royal Society of Chemistry]
卷期号:51 (23): 8994-9006 被引量:41
标识
DOI:10.1039/d2dt01197b
摘要

Green hydrogen derived from the water-electrolysis route is emerging as a game changer for achieving global carbon neutrality. Economically producing hydrogen through water electrolysis, however, requires the development of low-cost and highly efficient electrocatalysts via scalable synthetic strategies. Herein, this work reports a simple and scalable immersion synthetic strategy to deposit reduced graphene oxide (rGO) nanosheets integrated with Ni-Fe-based hydroxide nanocatalysts on nickel foam (NF) at room temperature. As a result of synergetic interactions among the hydroxides, rGO and NF, enhanced catalytic sites with improved charge transport between the electrode and electrolyte were perceived, resulting in significantly enhanced oxygen evolution reaction (OER) activity with low overpotentials of 270 and 320 mV at 100 and 500 mA cm-2, respectively, in a 1.0 M KOH aqueous electrolyte. This performance is superior to those of the hydroxide-based electrode without incorporating rGO and the IrO2-benchmark electrode. Furthermore, when the conventional OER is substituted with urea decomposition (UOR) as a proxy anodic reaction, the electrolyzer achieves 100 and 500 mA cm-2 at a lower potential by 150 and 120 mV, respectively than the OER counterpart without influencing the hydrogen evolution reaction (HER) activity at the cathode. Notably, the rGO-incorporated electrode delivers a spectacularly high UOR current density of 1600 mA cm-2 at 1.53 V vs. RHE, indicating the decomposition of urea at an outstandingly high rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳yang发布了新的文献求助10
刚刚
tx完成签到,获得积分10
刚刚
科研通AI2S应助兴奋千兰采纳,获得10
刚刚
彭鑫完成签到,获得积分10
刚刚
zyc1111111发布了新的文献求助50
刚刚
jeremyher完成签到,获得积分10
4秒前
6秒前
打打应助阳yang采纳,获得10
6秒前
pluto完成签到,获得积分0
6秒前
CodeCraft应助南卡采纳,获得10
6秒前
举个栗子完成签到,获得积分10
7秒前
哥是大企鹅完成签到 ,获得积分0
7秒前
HFan完成签到,获得积分10
9秒前
善学以致用应助aaa采纳,获得10
10秒前
安详的书本完成签到 ,获得积分10
11秒前
困_zzzzzz完成签到 ,获得积分10
11秒前
YDL发布了新的文献求助10
13秒前
赘婿应助Michelle采纳,获得10
13秒前
13秒前
yy2023应助今我来思采纳,获得10
14秒前
眼睛大的从雪完成签到,获得积分10
17秒前
华仔应助和谐沛芹采纳,获得10
17秒前
18秒前
18秒前
lym完成签到,获得积分10
18秒前
Hello应助称心乐枫采纳,获得10
19秒前
小刚完成签到,获得积分0
19秒前
19秒前
zyc1111111发布了新的文献求助50
20秒前
DE2022发布了新的文献求助10
20秒前
温乘云完成签到,获得积分10
20秒前
taozhiqi完成签到 ,获得积分10
21秒前
cc发布了新的文献求助10
22秒前
YDL完成签到,获得积分10
22秒前
24秒前
沛蓝完成签到,获得积分10
24秒前
25秒前
ding应助Rou采纳,获得10
26秒前
FashionBoy应助yiren采纳,获得10
26秒前
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239257
求助须知:如何正确求助?哪些是违规求助? 2884555
关于积分的说明 8234216
捐赠科研通 2552608
什么是DOI,文献DOI怎么找? 1380889
科研通“疑难数据库(出版商)”最低求助积分说明 649099
邀请新用户注册赠送积分活动 624817