过电位
材料科学
催化作用
析氧
质子交换膜燃料电池
氧化物
化学工程
分解水
氧化锡
交换电流密度
无机化学
猝灭(荧光)
电解
电化学
化学
冶金
电极
物理化学
塔菲尔方程
电解质
有机化学
物理
光催化
量子力学
工程类
荧光
作者
Bing Huang,Hengyue Xu,Nannan Jiang,Minghao Wang,Jianren Huang,Lunhui Guan
标识
DOI:10.1002/advs.202201654
摘要
Abstract Future energy demands for green hydrogen have fueled intensive research on proton‐exchange membrane water electrolyzers (PEMWE). However, the sluggish oxygen evolution reaction (OER) and highly corrosive environment on the anode side narrow the catalysts to be expensive Ir‐based materials. It is very challenging to develop cheap and effective OER catalysts. Herein, Co‐hexamethylenetetramine metal–organic framework (Co‐HMT) as the precursor and a fast‐quenching method is employed to synthesize RuO 2 nanorods loaded on antimony‐tin oxide (ATO). Physical characterizations and theoretical calculations indicate that the ATO can increase the electrochemical surface areas of the catalysts, while the tensile strains incorporated by quenching can alter the electronic state of RuO 2 . The optimized catalyst exhibits a small overpotential of 198 mV at 10 mA cm −2 for OER, and keeps almost unchanged after 150 h chronopotentiometry. When applied in a real PEMWE assembly, only 1.51 V is needed for the catalyst to reach a current density of 1 A cm −2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI