Smartphone-based road manhole cover detection and classification

封面(代数) 路面 惯性测量装置 卷积神经网络 计算机科学 工程类 人工智能 模式识别(心理学) 土木工程 机械工程
作者
Baoding Zhou,Wenjian Zhao,Wenhao Guo,Linchao Li,Dejin Zhang,Qingzhou Mao,Qingquan Li
出处
期刊:Automation in Construction [Elsevier]
卷期号:140: 104344-104344 被引量:24
标识
DOI:10.1016/j.autcon.2022.104344
摘要

Road surface condition detection is an important application for many intelligent transportation systems (ITSs). A manhole cover depression is one of the common factors affecting road conditions. Smartphones are equipped with different sensors, which can be used to collect image data and inertial data. A new large-scale manhole cover detection dataset is developed by using smartphones to collect road image data, and a hierarchical classification method based on the convolutional neural network is proposed in this paper. The proposed method first coarsely classifies the images into nonrainy and rainy types and then performs manhole cover detections based on the coarse classification results. As a result, the proposed method achieves an accuracy of approximately 86.3% for road manhole cover detection. Based on the observation that different degrees of manhole cover subsidence produce different degrees of inertial sensor data, this paper used a machine learning method, which can automatically classify the detected manhole covers into different degrees of subsidence, namely good, average, and poor. The average recalls, average precisions, and average F1-measures achieve approximately 87.3%, 86.9%, and 87.2% accuracy, respectively. The results show that the proposed approach can effectively detect manhole covers in different weather and road conditions, which can effectively reduce the cost of road manhole cover data collection and detection, providing a new method for road manhole cover detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
曾欢完成签到,获得积分10
1秒前
2秒前
小巧日记本完成签到,获得积分10
2秒前
hahaha完成签到,获得积分10
3秒前
daihq3发布了新的文献求助10
5秒前
HAPPY完成签到,获得积分20
6秒前
白面包发布了新的文献求助10
6秒前
7秒前
Zhang_BY完成签到 ,获得积分10
8秒前
玉鱼儿完成签到 ,获得积分10
8秒前
Gang完成签到,获得积分10
8秒前
11秒前
逍遥小书生完成签到 ,获得积分10
12秒前
伪电气白兰完成签到 ,获得积分10
13秒前
温婉的从露完成签到 ,获得积分10
13秒前
失眠的耳机完成签到,获得积分10
15秒前
17秒前
欢呼善斓完成签到,获得积分20
17秒前
汉堡包应助lala采纳,获得10
18秒前
彪行天下完成签到,获得积分10
18秒前
srui完成签到,获得积分10
19秒前
跳跃的惮完成签到,获得积分10
19秒前
Slemon完成签到,获得积分10
19秒前
23秒前
吃吃货完成签到 ,获得积分10
23秒前
isabellae发布了新的文献求助100
24秒前
你博哥完成签到 ,获得积分10
25秒前
Hello应助初余采纳,获得10
26秒前
努力向前看完成签到,获得积分10
26秒前
Frozen完成签到,获得积分10
28秒前
28秒前
白面包完成签到,获得积分10
28秒前
Kimi完成签到,获得积分10
29秒前
阳光的梦寒完成签到 ,获得积分10
29秒前
31秒前
jaslek发布了新的文献求助10
31秒前
可爱静静发布了新的文献求助10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011