Mn-doped Ru/RuO2 nanoclusters@CNT with strong metal-support interaction for efficient water splitting in acidic media

双功能 催化作用 分解水 纳米团簇 析氧 密度泛函理论 材料科学 兴奋剂 无机化学 双功能催化剂 空位缺陷 化学 物理化学 纳米技术 计算化学 电化学 结晶学 电极 有机化学 光电子学 光催化
作者
Wenxia Xu,Hao Huang,Xueke Wu,Yueyue Yuan,Yanru Liu,Zuochao Wang,Dan Zhang,Yingnan Qin,Jianping Lai,Lei Wang
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:242: 110013-110013 被引量:37
标识
DOI:10.1016/j.compositesb.2022.110013
摘要

Preparation of low-cost, highly activity and stable bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media has great challenges. Here, a series of M-Ru/RuO2@CNT (M = Mn, Cd, Cu) bifunctional catalysts were synthesized by doping and strong metal-support interaction (SMSI) strategies to improve the activity and stability of the catalysts. The experiment results show that the optimized Mn–Ru/RuO2@CNT catalyst with ultra-small particle size (2.5 nm) has the best catalytic performance, and the OER and HER tests at 10 mA cm−2 in 0.5 M H2SO4 solution show excellent overpotentials of 177 mV and 30 mV respectively, which are better than most of the catalysts reported recently. In addition, current densities of 10 mA cm−2 and 100 mA cm−2 can be obtained at 1.43 V and 1.51 V when measuring water splitting and can last up to 100 h at a current density of 100 mA cm−2. And this is the first time to achieve the stability of acid water splitting of Ru-based catalyst under large current density. Density functional theory (DFT) calculations show that after manganese doping, the electronic structure is changed by charge redistribution between doped ions and ruthenium-based catalysts containing heterojunctions, and the binding energy of intermediates is optimized to improve the catalytic activity; the stability of the catalyst is improved by increasing the formation energy of ruthenium vacancy and preventing the formation of ruthenium vacancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵纤完成签到,获得积分10
2秒前
楚天舒完成签到 ,获得积分10
4秒前
8秒前
眼睛大以寒完成签到 ,获得积分10
10秒前
wangli发布了新的文献求助10
10秒前
Lichen完成签到,获得积分20
11秒前
LeiZha发布了新的文献求助10
12秒前
carol关注了科研通微信公众号
13秒前
颉给完成签到,获得积分10
13秒前
carol关注了科研通微信公众号
14秒前
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
bingxinl应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得30
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
15秒前
17秒前
19秒前
小王发布了新的文献求助10
19秒前
夺命猪头发布了新的文献求助20
19秒前
19秒前
21秒前
共享精神应助Alice采纳,获得10
21秒前
22秒前
wangli发布了新的文献求助10
23秒前
虚幻初之发布了新的文献求助10
25秒前
26秒前
LeiZha完成签到,获得积分10
27秒前
我想开花了完成签到,获得积分10
28秒前
卷卷发布了新的文献求助10
28秒前
carol发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775376
求助须知:如何正确求助?哪些是违规求助? 3321021
关于积分的说明 10203165
捐赠科研通 3035891
什么是DOI,文献DOI怎么找? 1665880
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740