已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combination of LF‐NMR and BP‐ANN to monitor the moisture content of rice during hot‐air drying

含水量 水分 化学 人工神经网络 材料科学 生物系统 土壤科学 分析化学(期刊) 环境科学 复合材料 计算机科学 色谱法 人工智能 生物 工程类 岩土工程
作者
Hongchao Wang,Gang Che,Lin Wan,Xin Wang,Hao Tang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (9) 被引量:10
标识
DOI:10.1111/jfpe.14102
摘要

Abstract In this study, a rapid real‐time nondestructive method for detecting the moisture content of rice during hot‐air drying was investigated. Intelligent techniques of low‐field nuclear magnetic resonance (LF‐NMR) and back propagation artificial neural network (BP‐ANN) were applied to monitor the moisture content of rice. The effect of different hot‐air temperatures (35, 45, 55, and 65°C) on the moisture content and water migration within rice was studied. The results showed that the drying temperature promoted the diffusion and transfer of water within the rice, and was positively proportional to the drying rate. The binding energy of the different states of water within rice increased with the drying process, and the variation in relaxation time and peak area was consistent for each stage at different temperatures. In addition, the amount of LF‐NMR signals was used as an indicator to build a predictive model for the moisture content of rice during hot‐air drying. A BP‐ANN prediction model optimized by transfer function, training function and number of neurons was used to monitor the moisture content of rice using the amount of LF‐NMR signals of different states of water as input variables. The optimized neural network model had the excellent predictive ability with an MSE of 6.02 × 10 −6 and R 2 of 0.996. These results provide a reference for combining LF‐NMR and BP‐ANN in the application of intelligent online monitoring of hot‐air drying of rice. Practical Applications The monitoring of moisture content during hot‐air drying of rice is an essential parameter for optimizing the drying process. The combined approach of LF‐NMR and BP‐ANN for rapid real‐time nondestructive monitoring is well suited to hot‐air drying of rice, allowing for improved product quality and operational processes. In addition, the model developed in this study has the good predictive performance to meet the current industry and production needs, providing new research ideas and technical references for the optimization of the drying process of rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助读文献啦采纳,获得10
2秒前
灰太狼完成签到,获得积分10
2秒前
whereas完成签到 ,获得积分10
3秒前
三十七度小火炉完成签到 ,获得积分10
3秒前
4秒前
勤能补拙完成签到 ,获得积分10
5秒前
脑洞疼应助lbbb采纳,获得10
6秒前
8秒前
8秒前
12秒前
12秒前
烟花应助阳阳采纳,获得10
13秒前
阔达的马里奥完成签到 ,获得积分10
14秒前
开心的野狼完成签到 ,获得积分10
19秒前
kxx完成签到 ,获得积分10
21秒前
任性大米完成签到 ,获得积分10
22秒前
我是老大应助猫滩儿采纳,获得10
23秒前
25秒前
起风了完成签到 ,获得积分10
26秒前
26秒前
26秒前
polite完成签到 ,获得积分10
27秒前
lemon发布了新的文献求助10
28秒前
舒心钧发布了新的文献求助10
31秒前
优质演绎了我的青春完成签到 ,获得积分10
32秒前
33秒前
34秒前
老实觅松完成签到 ,获得积分10
34秒前
凯旋预言完成签到 ,获得积分10
36秒前
36秒前
李昕123发布了新的文献求助20
37秒前
斯文麦片完成签到 ,获得积分10
38秒前
38秒前
41秒前
顾天与发布了新的文献求助10
41秒前
42秒前
43秒前
zhuj11应助石头采纳,获得10
44秒前
jimmyak应助跳跃的从阳采纳,获得10
45秒前
艾艾发布了新的文献求助10
46秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561701
求助须知:如何正确求助?哪些是违规求助? 3135368
关于积分的说明 9411983
捐赠科研通 2835808
什么是DOI,文献DOI怎么找? 1558679
邀请新用户注册赠送积分活动 728434
科研通“疑难数据库(出版商)”最低求助积分说明 716825