Contour deformation network for instance segmentation

人工智能 变形(气象学) 分割 计算机科学 模式识别(心理学) 计算机视觉 地质学 海洋学
作者
Kefeng Lv,Yongsheng Zhang,Yibin Ying,Hanyun Wang,Lei Li,Huaigang Jiang,Chenguang Dai
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:159: 213-219 被引量:3
标识
DOI:10.1016/j.patrec.2022.05.025
摘要

• GCN-based contour deformation network is proposed. • The refined contour of an object mask is achieved for instance segmentation . • To deal with various sizes of objects in scenes, adaptive deformation-scale selection strategy presented. • Automatically constructs the local neighborhood graph and selects multiscale features. • Extensive experimental results provided to demonstrate the performance of the proposed network. To improve the precision of the contour in instance segmentation, this study proposes an iterative contour deformation network (CD-Net) based on a graph convolutional network (GCN). The proposed method treats the segmentation results of the Mask R-CNN model as the initial contours and refines the instances contour iteratively. Specifically, a contour point set is first sampled from the initial contour. Considering the various sizes of the instances, and according to the size of corresponding bounding boxes determined by the Mask R-CNN, a local neighborhood graph is constructed for each selected contour point. Subsequently, multi-scales features are automatically selected and combined with features learned in Mask R-CNN for each point in the local neighborhood graph. The local neighborhood graphs with features are then fed into the GCN to learn the deformation vectors, and the instance contours are refined accordingly. Finally, the refined contour is treated as the initial contour, and the above process is repeated to obtain the final instance contours. The experimental results on the COCO and Cityscapes datasets demonstrate that the proposed method achieves state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
是谁还没睡完成签到 ,获得积分10
刚刚
Wtony完成签到 ,获得积分10
1秒前
追寻的涵菱完成签到,获得积分20
4秒前
搜集达人应助健康的宛菡采纳,获得10
5秒前
Joya完成签到,获得积分10
6秒前
Accepted应助Cyber_relic采纳,获得10
7秒前
9秒前
222完成签到,获得积分10
11秒前
叶子完成签到 ,获得积分10
12秒前
13秒前
不安的可乐完成签到,获得积分10
14秒前
Soda8513完成签到,获得积分10
15秒前
20秒前
23秒前
yyy111完成签到,获得积分20
26秒前
ColinWine完成签到 ,获得积分10
26秒前
UniTTEC9560完成签到,获得积分10
30秒前
yyy111发布了新的文献求助10
30秒前
lucia5354完成签到,获得积分10
30秒前
邱佩群完成签到 ,获得积分10
31秒前
31秒前
Bingo完成签到,获得积分10
33秒前
Chong完成签到,获得积分10
33秒前
渺渺完成签到 ,获得积分10
35秒前
浮游应助阜睿采纳,获得10
35秒前
奕妘完成签到,获得积分10
40秒前
Cyber_relic完成签到,获得积分10
41秒前
ZXD1989完成签到 ,获得积分10
41秒前
李宗洋完成签到,获得积分10
42秒前
无语的翠柏完成签到,获得积分10
44秒前
沙克几十块完成签到,获得积分0
45秒前
午盏完成签到 ,获得积分10
46秒前
maxthon完成签到,获得积分10
47秒前
48秒前
adamchris完成签到,获得积分10
49秒前
xiekunwhy完成签到,获得积分10
1分钟前
清风徐来完成签到 ,获得积分10
1分钟前
wuta完成签到,获得积分10
1分钟前
土土完成签到,获得积分10
1分钟前
adeno完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498687
求助须知:如何正确求助?哪些是违规求助? 4595838
关于积分的说明 14450057
捐赠科研通 4528831
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581