Contour deformation network for instance segmentation

人工智能 变形(气象学) 分割 计算机科学 模式识别(心理学) 计算机视觉 地质学 海洋学
作者
Kefeng Lv,Yongsheng Zhang,Yibin Ying,Hanyun Wang,Lei Li,Huaigang Jiang,Chenguang Dai
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:159: 213-219 被引量:3
标识
DOI:10.1016/j.patrec.2022.05.025
摘要

• GCN-based contour deformation network is proposed. • The refined contour of an object mask is achieved for instance segmentation . • To deal with various sizes of objects in scenes, adaptive deformation-scale selection strategy presented. • Automatically constructs the local neighborhood graph and selects multiscale features. • Extensive experimental results provided to demonstrate the performance of the proposed network. To improve the precision of the contour in instance segmentation, this study proposes an iterative contour deformation network (CD-Net) based on a graph convolutional network (GCN). The proposed method treats the segmentation results of the Mask R-CNN model as the initial contours and refines the instances contour iteratively. Specifically, a contour point set is first sampled from the initial contour. Considering the various sizes of the instances, and according to the size of corresponding bounding boxes determined by the Mask R-CNN, a local neighborhood graph is constructed for each selected contour point. Subsequently, multi-scales features are automatically selected and combined with features learned in Mask R-CNN for each point in the local neighborhood graph. The local neighborhood graphs with features are then fed into the GCN to learn the deformation vectors, and the instance contours are refined accordingly. Finally, the refined contour is treated as the initial contour, and the above process is repeated to obtain the final instance contours. The experimental results on the COCO and Cityscapes datasets demonstrate that the proposed method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研钓鱼佬发布了新的文献求助200
刚刚
刚刚
安静幻枫发布了新的文献求助10
刚刚
1秒前
羁鸟发布了新的文献求助10
1秒前
会放电的皮卡丘完成签到,获得积分10
1秒前
3秒前
呼昂黄发布了新的文献求助10
4秒前
5秒前
一江完成签到 ,获得积分10
6秒前
7秒前
FashionBoy应助山河与海采纳,获得10
8秒前
羁鸟完成签到,获得积分10
8秒前
柏小霜发布了新的文献求助10
8秒前
无涯尔完成签到,获得积分10
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
萧水白应助科研通管家采纳,获得10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
RONG应助科研通管家采纳,获得10
9秒前
ningqing发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
orixero应助专注的西西采纳,获得100
11秒前
11秒前
科研通AI2S应助白华苍松采纳,获得10
12秒前
12秒前
13秒前
14秒前
所所应助活力的如冬采纳,获得10
15秒前
15秒前
16秒前
16秒前
777发布了新的文献求助10
17秒前
17秒前
徐徐发布了新的文献求助10
17秒前
啊圣诞袜应助箜箜采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302046
求助须知:如何正确求助?哪些是违规求助? 2936566
关于积分的说明 8478154
捐赠科研通 2610354
什么是DOI,文献DOI怎么找? 1425128
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646465