Contour deformation network for instance segmentation

人工智能 变形(气象学) 分割 计算机科学 模式识别(心理学) 计算机视觉 地质学 海洋学
作者
Kefeng Lv,Yongsheng Zhang,Yibin Ying,Hanyun Wang,Lei Li,Huaigang Jiang,Chenguang Dai
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:159: 213-219 被引量:3
标识
DOI:10.1016/j.patrec.2022.05.025
摘要

• GCN-based contour deformation network is proposed. • The refined contour of an object mask is achieved for instance segmentation . • To deal with various sizes of objects in scenes, adaptive deformation-scale selection strategy presented. • Automatically constructs the local neighborhood graph and selects multiscale features. • Extensive experimental results provided to demonstrate the performance of the proposed network. To improve the precision of the contour in instance segmentation, this study proposes an iterative contour deformation network (CD-Net) based on a graph convolutional network (GCN). The proposed method treats the segmentation results of the Mask R-CNN model as the initial contours and refines the instances contour iteratively. Specifically, a contour point set is first sampled from the initial contour. Considering the various sizes of the instances, and according to the size of corresponding bounding boxes determined by the Mask R-CNN, a local neighborhood graph is constructed for each selected contour point. Subsequently, multi-scales features are automatically selected and combined with features learned in Mask R-CNN for each point in the local neighborhood graph. The local neighborhood graphs with features are then fed into the GCN to learn the deformation vectors, and the instance contours are refined accordingly. Finally, the refined contour is treated as the initial contour, and the above process is repeated to obtain the final instance contours. The experimental results on the COCO and Cityscapes datasets demonstrate that the proposed method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baixun发布了新的文献求助10
4秒前
LJ_2完成签到 ,获得积分10
8秒前
热心的飞风完成签到 ,获得积分10
11秒前
peiter发布了新的文献求助10
11秒前
科研狗的春天完成签到 ,获得积分10
11秒前
悦耳冬萱完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
温暖完成签到 ,获得积分10
13秒前
jw完成签到,获得积分10
17秒前
白小橘完成签到 ,获得积分10
17秒前
17秒前
stiger完成签到,获得积分10
20秒前
风中的向卉完成签到 ,获得积分10
20秒前
幽默艳发布了新的文献求助20
22秒前
森山完成签到,获得积分10
25秒前
书生也是小郎中完成签到 ,获得积分10
27秒前
27秒前
wanci应助puzhongjiMiQ采纳,获得10
28秒前
NexusExplorer应助puzhongjiMiQ采纳,获得10
28秒前
领导范儿应助puzhongjiMiQ采纳,获得10
28秒前
Rondab应助puzhongjiMiQ采纳,获得10
28秒前
28秒前
Rondab应助puzhongjiMiQ采纳,获得10
28秒前
Rondab应助puzhongjiMiQ采纳,获得10
29秒前
Rondab应助puzhongjiMiQ采纳,获得10
29秒前
Rondab应助puzhongjiMiQ采纳,获得10
29秒前
29秒前
LiChard完成签到 ,获得积分10
30秒前
Corilla发布了新的文献求助10
36秒前
健忘的金完成签到 ,获得积分10
43秒前
44秒前
月光入梦完成签到 ,获得积分10
46秒前
victory_liu完成签到,获得积分10
48秒前
阿曾完成签到 ,获得积分10
48秒前
幽默艳完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
55秒前
李爱国应助小鱼女侠采纳,获得10
55秒前
raiychemj完成签到,获得积分10
1分钟前
Shan5完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008711
求助须知:如何正确求助?哪些是违规求助? 3548365
关于积分的说明 11298818
捐赠科研通 3283040
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218