A new feature selection approach for driving fatigue EEG detection with a modified machine learning algorithm

希尔伯特-黄变换 极限学习机 特征选择 粒子群优化 人工智能 样本熵 模式识别(心理学) 计算机科学 熵(时间箭头) 特征提取 脑电图 光谱密度 算法 人工神经网络 物理 计算机视觉 精神科 滤波器(信号处理) 电信 量子力学 心理学
作者
Yun Zheng,Yuliang Ma,Jared A Cammon,Songjie Zhang,Jianhai Zhang,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:147: 105718-105718 被引量:3
标识
DOI:10.1016/j.compbiomed.2022.105718
摘要

This study aims to identify new electroencephalography (EEG) features for the detection of driving fatigue. The most common EEG feature in driving fatigue detection is the power spectral density (PSD) of five frequency bands, i.e., alpha, beta, gamma, delta, and theta bands. PSD has proved to be useful, however its flaw is that it covers much implicit information of the time domain. In this study we propose a new approach, which combines ensemble empirical mode decomposition (EEMD) and PSD, to explore new EEG features for driving fatigue detection. Through EEMD we get a series of intrinsic mode function (IMF) components, from which we can extract PSD features. We used six features to compare with the proposed features, including the PSD of five frequency bands, PSD of empirical mode decomposition (EMD)-IMF components, PSD, permutation entropy (PE), sample entropy (SE), and fuzzy entropy (FE) of EEMD-IMF components, and common spatial pattern. Feature overlap ratio and multiple machine learning methods were applied to evaluate these feature extraction approaches. The results show that the classification accuracy and overlap ratio of experiments based on IMF's energy spectrum is far superior to other features. Through channel optimization and a comparison of accuracy, we conclude that our new feature selection approach has a better performance based on the modified hierarchical extreme learning machine algorithm with Particle Swarm Optimization (PSO-H-ELM) classifier, which has the highest average accuracy of 97.53%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldage发布了新的文献求助10
刚刚
刚刚
huangpeihao发布了新的文献求助10
刚刚
叶子完成签到,获得积分0
刚刚
1秒前
1秒前
小司机发布了新的文献求助10
1秒前
2秒前
2秒前
喜悦的萤完成签到,获得积分10
2秒前
2秒前
外向寄云发布了新的文献求助10
2秒前
充电宝应助花花采纳,获得10
2秒前
wrb完成签到,获得积分10
3秒前
曾婉之小汁完成签到,获得积分10
4秒前
棟糖完成签到,获得积分10
4秒前
WW完成签到 ,获得积分10
4秒前
喜悦发卡发布了新的文献求助10
4秒前
yan发布了新的文献求助10
4秒前
4秒前
简单的大白完成签到,获得积分10
4秒前
4秒前
DE应助儿学化学打断腿采纳,获得10
4秒前
超人完成签到,获得积分10
5秒前
眼睛大的傲菡完成签到,获得积分10
5秒前
liruqi发布了新的文献求助10
5秒前
5秒前
6秒前
SJJ应助cindy采纳,获得10
6秒前
6秒前
理想发布了新的文献求助10
6秒前
猫大哥发布了新的文献求助30
6秒前
6秒前
6秒前
7秒前
7秒前
三眼乌鸦完成签到,获得积分10
7秒前
十二完成签到,获得积分10
7秒前
Thi发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502