A new feature selection approach for driving fatigue EEG detection with a modified machine learning algorithm

希尔伯特-黄变换 极限学习机 特征选择 粒子群优化 人工智能 样本熵 模式识别(心理学) 计算机科学 熵(时间箭头) 特征提取 脑电图 光谱密度 算法 人工神经网络 物理 计算机视觉 精神科 滤波器(信号处理) 电信 量子力学 心理学
作者
Yun Zheng,Yuliang Ma,Jared A Cammon,Songjie Zhang,Jianhai Zhang,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:147: 105718-105718 被引量:3
标识
DOI:10.1016/j.compbiomed.2022.105718
摘要

This study aims to identify new electroencephalography (EEG) features for the detection of driving fatigue. The most common EEG feature in driving fatigue detection is the power spectral density (PSD) of five frequency bands, i.e., alpha, beta, gamma, delta, and theta bands. PSD has proved to be useful, however its flaw is that it covers much implicit information of the time domain. In this study we propose a new approach, which combines ensemble empirical mode decomposition (EEMD) and PSD, to explore new EEG features for driving fatigue detection. Through EEMD we get a series of intrinsic mode function (IMF) components, from which we can extract PSD features. We used six features to compare with the proposed features, including the PSD of five frequency bands, PSD of empirical mode decomposition (EMD)-IMF components, PSD, permutation entropy (PE), sample entropy (SE), and fuzzy entropy (FE) of EEMD-IMF components, and common spatial pattern. Feature overlap ratio and multiple machine learning methods were applied to evaluate these feature extraction approaches. The results show that the classification accuracy and overlap ratio of experiments based on IMF's energy spectrum is far superior to other features. Through channel optimization and a comparison of accuracy, we conclude that our new feature selection approach has a better performance based on the modified hierarchical extreme learning machine algorithm with Particle Swarm Optimization (PSO-H-ELM) classifier, which has the highest average accuracy of 97.53%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
陆柯川完成签到,获得积分10
2秒前
包容可仁发布了新的文献求助10
3秒前
Xbax发布了新的文献求助10
3秒前
3秒前
SciGPT应助莫西莫西采纳,获得10
3秒前
与月同行完成签到,获得积分10
4秒前
ff完成签到,获得积分10
4秒前
bkagyin应助summer采纳,获得10
5秒前
瘦瘦依白应助kingwhitewing采纳,获得10
5秒前
一把过完成签到,获得积分10
5秒前
5秒前
6秒前
Ezio_sunhao完成签到,获得积分10
6秒前
7秒前
8秒前
热心烙完成签到,获得积分10
8秒前
8秒前
阿泽完成签到 ,获得积分10
8秒前
8秒前
wwww完成签到 ,获得积分10
9秒前
YixiaoWang发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
cr完成签到,获得积分10
10秒前
威武鸽子完成签到,获得积分20
10秒前
包容可仁完成签到,获得积分10
10秒前
拼搏绿柳完成签到,获得积分10
11秒前
开心的紫烟完成签到,获得积分10
11秒前
wdy111应助淡漠采纳,获得20
11秒前
11秒前
水吉2000完成签到,获得积分10
11秒前
12秒前
Owen应助zzzzz采纳,获得30
12秒前
CSPC001完成签到 ,获得积分10
13秒前
ForZero发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582