电解质
材料科学
阳极
阴极
化学工程
复合数
离子电导率
电极
纳米技术
复合材料
化学
物理化学
工程类
作者
Qi Sun,Xiaodong Chen,Jian Xie,Chao Huang,X XU,Jiangping Tu,Cai Shen,Yuhong Jin,Kaili Zhang,Fei Chen,Tiejun Zhu,X.B. Zhao,Jie Cheng
标识
DOI:10.1016/j.mtnano.2022.100235
摘要
Garnet-type Li7La3Zr2O12 (LLZO) ceramics has been considered as an ideal solid-state electrolyte for Li metal cells because of its high ionic conductivity and relatively stable interface with Li. However, it is electrochemically incompatible with some high-voltage cathodes, e.g. LiCoO2. In this work, a nanoscale Li1.3Al0.3Ti1.7(PO4)3 (LATP) fast ion conductor was coated on LiCoO2 (only 1 wt% LATP), bringing obviously enhanced interfacial compatibility with a composite electrolyte composed of Al, Nb-codoped LLZO and polyethylene oxide (PEO). A free-standing, flexible and ultrathin (20 μm) electrolyte membrane was successfully fabricated by a facile and scalable route, even though with a high ceramics content (67 wt%). Quasi-solid-state coin and pouch-type Li cells were assembled with the LATP-coated LiCoO2 cathode, free-standing composite electrolyte and Li anode, together with soft interface modification by in-situ polymerization. The cells show stable cycling due to combined factors of enhanced electrode/electrolyte compatibility, ultrathin nature of the electrolyte membrane and the in-situ built soft interface. The pouch cells can be cycled for 300 cycles at 0.3 C and 60 °C with 80% retention. The pouch cells can endure abuse tests of bending, cutting and nail penetration. At a practical LiCoO2 loading of 3 mAh cm−2, the Li|LiCoO2 pouch cell still shows stable cycling with 90% retention after 100 cycles at 60 °C (0.2 C charge/0.5 C discharge). This work provides a practical method to fabricate high-performance solid-state Li cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI