Initial CT-based radiomics nomogram for predicting in-hospital mortality in patients with traumatic brain injury: a multicenter development and validation study

列线图 医学 逻辑回归 无线电技术 神经组阅片室 接收机工作特性 创伤性脑损伤 神经学 放射科 内科学 精神科
作者
Ruizhe Zheng,Zhi-hui Zhao,Xitao Yang,Shaowei Jiang,Yongde Li,Wenjie Li,Xiuhui Li,Yue Zhou,Chengjin Gao,Yupo Ma,Shuming Pan,Yang Wang
出处
期刊:Neurological Sciences [Springer Science+Business Media]
卷期号:43 (7): 4363-4372 被引量:3
标识
DOI:10.1007/s10072-022-05954-8
摘要

To develop and validate a radiomic prediction model using initial noncontrast computed tomography (CT) at admission to predict in-hospital mortality in patients with traumatic brain injury (TBI).A total of 379 TBI patients from three cohorts were categorized into training, internal validation, and external validation sets. After filtering the unstable features with the minimum redundancy maximum relevance approach, the CT-based radiomics signature was selected by using the least absolute shrinkage and selection operator (LASSO) approach. A personalized predictive nomogram incorporating the radiomic signature and clinical features was developed using a multivariate logistic model to predict in-hospital mortality in patients with TBI. The calibration, discrimination, and clinical usefulness of the radiomics signature and nomogram were evaluated.The radiomic signature consisting of 12 features had areas under the curve (AUCs) of 0.734, 0.716, and 0.706 in the prediction of in-hospital mortality in the internal and two external validation cohorts. The personalized predictive nomogram integrating the radiomic and clinical features demonstrated significant calibration and discrimination with AUCs of 0.843, 0.811, and 0.834 in the internal and two external validation cohorts. Based on decision curve analysis (DCA), both the radiomic features and nomogram were found to be clinically significant and useful.This predictive nomogram incorporating the CT-based radiomic signature and clinical features had maximum accuracy and played an optimized role in the early prediction of in-hospital mortality. The results of this study provide vital insights for the early warning of death in TBI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
594778089完成签到,获得积分20
1秒前
444发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI5应助zcy采纳,获得10
3秒前
3秒前
jingchen完成签到 ,获得积分10
5秒前
小新小新完成签到 ,获得积分10
5秒前
活性氧发布了新的文献求助10
6秒前
桐桐应助puyuanting采纳,获得10
6秒前
7秒前
Solar energy完成签到,获得积分10
8秒前
xiaoxiaomi应助龙游天下采纳,获得20
10秒前
10秒前
Zhao_Kai完成签到 ,获得积分10
11秒前
LUK_完成签到 ,获得积分10
11秒前
落叶捎来讯息完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
hhh完成签到 ,获得积分10
14秒前
zpw123完成签到,获得积分20
15秒前
舒适乐儿完成签到 ,获得积分20
15秒前
香葱苏打饼完成签到 ,获得积分10
16秒前
17秒前
自信松思发布了新的文献求助10
18秒前
冷酷鱼完成签到 ,获得积分10
19秒前
拼搏的咖啡豆完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
23秒前
辞星完成签到 ,获得积分10
24秒前
24秒前
gangqiang完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
单薄的元风完成签到 ,获得积分10
26秒前
27秒前
27秒前
27秒前
Akim应助科研通管家采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662431
求助须知:如何正确求助?哪些是违规求助? 3223253
关于积分的说明 9750555
捐赠科研通 2933042
什么是DOI,文献DOI怎么找? 1605896
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743