Application of mNGS in the Etiological Analysis of Lower Respiratory Tract Infections and the Prediction of Drug Resistance

致病菌 医学 抗药性 呼吸道感染 内科学 呼吸系统 微生物学 细菌 生物 遗传学 解剖
作者
Haibing Liu,Yue Zhang,Jun Yang,Yanfang Liu,Jianguo Chen
出处
期刊:Microbiology spectrum [American Society for Microbiology]
卷期号:10 (1) 被引量:32
标识
DOI:10.1128/spectrum.02502-21
摘要

Lower respiratory tract infections (LRTIs) have high morbidity and mortality rates. However, traditional etiological detection methods have not been able to meet the needs for the clinical diagnosis and prognosis of LRTIs. The rapid development of metagenomic next-generation sequencing (mNGS) provides new insights for the diagnosis and treatment of LRTIs; however, little is known about how to interpret the application of mNGS results in LRTIs. In this study, lower respiratory tract specimens from 46 patients with suspected LRTIs were tested simultaneously using conventional microbiological detection methods and mNGS. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the logarithm of reads per kilobase per million mapped reads [lg(RPKM)], genomic coverage, and relative abundance of the organism in predicting the true-positive pathogenic bacteria. True-positive viruses were identified according to the lg(RPKM) threshold of bacteria. We also evaluated the ability to predict drug resistance genes using mNGS. Compared to that using conventional detection methods, the false-positive detection rate of pathogenic bacteria was significantly higher using mNGS. It was concluded from the ROC curves that the lg(RPKM) and genomic coverage contributed to the identification of pathogenic bacteria, with the performance of lg(RPKM) being the best (area under the curve [AUC] = 0.99). The corresponding lg(RPKM) threshold for identifying the pathogenic bacteria was -1.35. Thirty-five strains of true-positive virus were identified based on the lg(RPKM) threshold of bacteria, with the detection of human gammaherpesvirus 4 being the highest and prone to coinfection with Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. Antimicrobial susceptibility tests (AST) revealed the resistance of bacteria containing drug resistance genes (detected by mNGS). However, the drug resistance genes of some multidrug-resistant bacteria were not detected. As an emerging technology, mNGS has shown many advantages for the unbiased etiological detection and the prediction of antibiotic resistance. However, a correct understanding of mNGS results is a prerequisite for its clinical application, especially for LRTIs. IMPORTANCE LRTIs are caused by hundreds of pathogens, and they have become a great threat to human health due to the limitations of traditional etiological detection methods. As an unbiased approach to detect pathogens, mNGS overcomes such etiological diagnostic challenges. However, there is no unified standard on how to use mNGS indicators (the sequencing reads, genomic coverage, and relative abundance of each organism) to distinguish between pathogens and colonizing microorganisms or contaminant microorganisms. Here, we selected the mNGS indicator with the best identification performance and established a cutoff value for the identification of pathogens in LRTIs using ROC curves. In addition, we also evaluated the accuracy of antibiotic resistance prediction using mNGS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我思故我在完成签到,获得积分0
1秒前
1秒前
东东西西完成签到,获得积分10
2秒前
siyuyu完成签到,获得积分10
2秒前
小周碎碎念完成签到,获得积分10
3秒前
sfef完成签到,获得积分10
3秒前
耕云钓月完成签到,获得积分10
4秒前
wshiyu完成签到 ,获得积分10
4秒前
nini完成签到 ,获得积分10
5秒前
打打应助Wang采纳,获得10
5秒前
6秒前
6秒前
宋枝野完成签到 ,获得积分10
8秒前
yhtu完成签到,获得积分10
8秒前
bobo完成签到 ,获得积分10
8秒前
隐形方盒完成签到,获得积分10
8秒前
小二郎应助123456采纳,获得10
9秒前
9秒前
哈哈哈完成签到,获得积分10
9秒前
happy完成签到,获得积分10
9秒前
dd完成签到 ,获得积分10
10秒前
hashtag完成签到,获得积分10
11秒前
喜悦松完成签到,获得积分10
11秒前
Zachary完成签到,获得积分10
12秒前
华仔完成签到 ,获得积分10
12秒前
缓慢的白梦完成签到 ,获得积分10
13秒前
机智胡萝卜完成签到,获得积分10
13秒前
xpptt发布了新的文献求助10
13秒前
高兴寒梦完成签到 ,获得积分10
13秒前
shannian完成签到,获得积分10
15秒前
沙克几十块完成签到,获得积分10
16秒前
zhangwj226完成签到,获得积分10
16秒前
默默的尔丝完成签到,获得积分10
16秒前
16秒前
YELLOW完成签到,获得积分10
17秒前
脑瓜子嗡嗡滴完成签到,获得积分10
17秒前
亦玉完成签到,获得积分10
17秒前
pp‘s完成签到 ,获得积分10
18秒前
cyd完成签到,获得积分20
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757