Non-Contact Heartbeat Detection Based on Ballistocardiogram Using UNet and Bidirectional Long Short-Term Memory

心跳 工件(错误) 计算机科学 心脏超声心动图 光容积图 人工智能 噪音(视频) 心率变异性 模式识别(心理学) 信号(编程语言) 语音识别 心率 计算机视觉 滤波器(信号处理) 医学 心脏病学 内科学 计算机安全 血压 图像(数学) 程序设计语言
作者
Yaozong Mai,Zizhao Chen,Baoxian Yu,Ye Li,Zhiqiang Pang,Han Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3720-3730 被引量:20
标识
DOI:10.1109/jbhi.2022.3162396
摘要

Benefiting from non-invasive sensing tech- nologies, heartbeat detection from ballistocardiogram (BCG) signals is of great significance for home-care applications, such as risk prediction of cardiovascular disease (CVD) and sleep staging, etc. In this paper, we propose an effective deep learning model for automatic heartbeat detection from BCG signals based on UNet and bidirectional long short-term memory (Bi-LSTM). The developed deep learning model provides an effective solution to the existing challenges in BCG-aided heartbeat detection, especially for BCG in low signal-to-noise ratio, in which the waveforms in BCG signals are irregular due to measured postures, rhythm and artifact motion. For validations, performance of the proposed detection is evaluated by BCG recordings from 43 subjects with different measured postures and heart rate ranges. The accuracy of the detected heartbeat intervals measured in different postures and signal qualities, in comparison with the R-R interval of ECG, is promising in terms of mean absolute error and mean relative error, respectively, which is superior to the state-of-the-art methods. Numerical results demonstrate that the proposed UNet-BiLSTM model performs robust to noise and perturbations (e.g. respiratory effort and artifact motion) in BCG signals, and provides a reliable solution to long term heart rate monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Betty发布了新的文献求助10
1秒前
SLL完成签到,获得积分10
1秒前
1秒前
快乐芒果完成签到,获得积分20
1秒前
1秒前
充电宝应助yelingyuan采纳,获得10
1秒前
充电宝应助NIHAO采纳,获得10
2秒前
LISHAN发布了新的文献求助20
2秒前
素笺发布了新的文献求助10
2秒前
青仔仔完成签到,获得积分10
2秒前
3秒前
3秒前
Jiayou Zhang发布了新的文献求助10
3秒前
3秒前
3秒前
wanci应助夺命三狼采纳,获得10
4秒前
4秒前
清脆平安完成签到 ,获得积分20
4秒前
所所应助Parsifal采纳,获得30
4秒前
4秒前
整齐外套关注了科研通微信公众号
5秒前
5秒前
慈祥的丹寒完成签到 ,获得积分10
6秒前
6秒前
曲沛萍发布了新的文献求助10
7秒前
7秒前
道中道发布了新的文献求助10
7秒前
伶俐德天发布了新的文献求助20
7秒前
wackykao发布了新的文献求助10
8秒前
Lucas应助VDV采纳,获得10
8秒前
靓丽安珊发布了新的文献求助10
8秒前
hjq发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
fu发布了新的文献求助10
9秒前
FashionBoy应助鸵鸟采纳,获得10
9秒前
10秒前
alier完成签到,获得积分10
10秒前
快乐若翠完成签到,获得积分10
10秒前
华杰发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668