亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance

不可用 预防性维护 调度(生产过程) 运筹学 计算机科学 作业车间调度 工作车间 数学优化 可靠性工程 运营管理 工程类 流水车间调度 数学 地铁列车时刻表 操作系统
作者
Rafael Lucas Costa Souza,Alireza Ghasemi,Ahmed Saif,Abolfazl Gharaei
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:168: 108130-108130 被引量:35
标识
DOI:10.1016/j.cie.2022.108130
摘要

• Job-shop scheduling problem under deterministic and stochastic unavailability. • Robust optimized schedule of integrated jobs and preventive maintenance tasks. • Mixed-integer linear model and two hybrid metaheuristic solutions proposed. • Solution approaches with excellent performance in marginal improvement and runtime. This paper presents a modeling and solution approach for a robust job-shop scheduling problem (JSP) under deterministic and stochastic machine unavailability caused, respectively, by planned preventive maintenance (PM) and unplanned corrective maintenance (CM) following random breakdowns. The goal is to optimize the sequence of jobs and run-based planned preventive maintenance tasks in a robust manner while considering the degradation of machines over time. The time to failure for each machine is assumed to follow a Weibull distribution. The robust objective function to be minimized is a weighted sum of the expected values of the makespan and the gross positive deviation between the actual and planned start times of the jobs, as proxies for quality robustness and solution robustness, respectively. Two metaheuristic algorithms that aim at providing a good balance between performance quality and solution robustness are developed. In both algorithms, the “true” makespan objective function (with both PM and CM) is approximated using three surrogate measures. Genetic algorithm (GA) is first used to optimize the surrogate functions, then the fittest solutions from the three oracles are simulated with random breakdown scenarios and the best among them is introduced as an elite member in the next GA iteration. The first algorithm terminates as soon as the solution obtained is worse than the best know solution or when the maximum number of iterations is reached, whereas the second algorithm applies a rule inspired by Simulated Annealing for termination. Numerical experimentation on benchmark instances from the literature showed excellent performance of the proposed algorithms in terms of average marginal improvement and runtime. These results show that the proposed framework can generate high-quality robust job shop schedules under deterministic and stochastic machine unavailability constraints. Moreover, the sensitivity analysis results recommended some key insights and directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
11秒前
35秒前
36秒前
1分钟前
lourahan发布了新的文献求助10
2分钟前
3分钟前
酷波er应助bukeshuo采纳,获得10
3分钟前
lourahan发布了新的文献求助10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
方琼燕完成签到 ,获得积分10
5分钟前
5分钟前
WWXWWX发布了新的文献求助10
5分钟前
5分钟前
moufei完成签到,获得积分10
6分钟前
L_x完成签到 ,获得积分10
7分钟前
悦耳十三发布了新的文献求助10
7分钟前
悦耳十三完成签到,获得积分10
7分钟前
8分钟前
8分钟前
JamesPei应助科研通管家采纳,获得10
8分钟前
ding应助糊涂的清醒者采纳,获得10
8分钟前
WWXWWX发布了新的文献求助10
8分钟前
9分钟前
9分钟前
哈哈发布了新的文献求助20
9分钟前
Lxy发布了新的文献求助50
10分钟前
哈哈完成签到,获得积分10
10分钟前
君寻完成签到 ,获得积分10
10分钟前
研友_8y2G0L完成签到,获得积分20
10分钟前
Diligency完成签到 ,获得积分10
10分钟前
10分钟前
情怀应助糊涂的清醒者采纳,获得10
11分钟前
poki完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
SciGPT应助清雨采纳,获得10
11分钟前
12分钟前
清雨发布了新的文献求助10
12分钟前
12分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921864
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438