已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multivariate genome-wide association study models to improve prediction of CROHN’S disease risk and identification of potential novel variants

单变量 全基因组关联研究 多元统计 Lasso(编程语言) 单核苷酸多态性 随机森林 遗传关联 多元分析 计算生物学 生物
作者
Debora Garza-Hernandez,Karol Estrada,Victor Trevino
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:: 105398-105398
标识
DOI:10.1016/j.compbiomed.2022.105398
摘要

Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) that affects the gastrointestinal tract with diverse symptoms. At present, genome-wide association studies (GWAS) has discovered more than 140 genetic loci associated with CD from several datasets. Using the usual univariate GWAS methods, researchers have discovered common variants with small effects. Univariate methods assume independence among the variants that miss subtle combinatorial signals. Multivariate approaches have improved risk prediction and have complemented univariate methods for elucidating the etiology of complex traits and potential novel associations. However, the current multivariate models for CD have been assessed for three datasets (published from 2006 to 2008) under unrelated methodological settings showing a broad performance spectrum. Notably, these multivariate studies do not analyze potential novel variants. Here, we aimed to perform a robust multivariate analysis of a CD dataset different from the one commonly used, and we used the information yielded by the models to identify whether the generated models could provide additional information about the potential novel variants of CD. Therefore, we compared different multivariate methods and models, LASSO (least absolute shrinkage and selection operator), XGBoost, random forest (RF), Bootstrap stage-wise model selection (BSWiMS), and LDpred, using a strict random subsampling approach to predict the CD risk using a recent GWAS dataset, United Kingdom IBD IBD Genetics Consortium (UKIBDGC), made available in 2017, that had not been used for CD prediction studies. In addition, we assessed the effect of common strategies by increasing and decreasing the number of single-nucleotide polymorphism (SNP) markers (using genotype imputation and linkage disequilibrium (LD)–clumping). We found that the LDpred model without any imputation was the best model among all the tested models for predicting the CD risk (area under the receiver operating characteristic curve (AUROC) = 0.667 ± 0.024) in this dataset. We validated the best models using a second dataset (National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD Genetics Consortium, which was previously used in CD prediction studies) in which LDpred was also the best method with a similar performance (AUROC = 0.634 ± 0.009). Based on the importance of the variants yielded by the multivariate models, we identified an unnoticed region within chromosome 6, tagged by SNP rs4945943; this region was close to the gene MARCKS, which appeared to contribute to CD risk. This research is the first multivariate prediction analysis applied to the UKIBDGC dataset. Our robust multivariate setting analysis enabled us to identify a potential variant that contributed to the CD risk. Multivariate methods are valuable tools for identifying genes that contribute to disease risk. • Multivariate models allow ranking variants, according to their contribution to the disease-risk prediction. • LDpred performed better to predict CD-risk, compared with other multivariate and the common polygenic risk score (PRS) analysis. • The LDpred model without imputation was the best model to predict CD risk (AUROC = 0.667 ± 0.024) in the UKIBDGC dataset. • An unnoticed region was identified, within chr 6 (SNP rs4945943) close to gene MARCKS, likely to contribute to CD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renxiaoting发布了新的文献求助10
2秒前
lanbing802完成签到,获得积分10
3秒前
传奇3应助善良高山采纳,获得10
6秒前
9秒前
9秒前
俊逸沛菡完成签到 ,获得积分10
10秒前
栗爷完成签到,获得积分0
12秒前
12秒前
cc2941完成签到,获得积分20
15秒前
善良高山发布了新的文献求助10
19秒前
lazysheep完成签到,获得积分10
25秒前
超越针针完成签到 ,获得积分10
27秒前
科研通AI5应助renxiaoting采纳,获得10
29秒前
JamesPei应助cc2941采纳,获得10
30秒前
38秒前
只会咕咕咕完成签到,获得积分10
38秒前
沉默白猫完成签到 ,获得积分10
39秒前
44秒前
45秒前
怕黑鲂完成签到 ,获得积分10
45秒前
hh完成签到 ,获得积分10
47秒前
Molly发布了新的文献求助10
49秒前
49秒前
1MENINA1完成签到 ,获得积分10
51秒前
知更鸟发布了新的文献求助10
52秒前
大模型应助似非采纳,获得10
56秒前
56秒前
57秒前
三叔发布了新的文献求助10
1分钟前
董H完成签到,获得积分10
1分钟前
知更鸟完成签到,获得积分10
1分钟前
renxiaoting发布了新的文献求助10
1分钟前
Molly完成签到,获得积分10
1分钟前
三叔完成签到,获得积分0
1分钟前
Ava应助斯文雨筠采纳,获得10
1分钟前
海陵吹风鸡完成签到,获得积分10
1分钟前
1分钟前
高山流水完成签到,获得积分10
1分钟前
苗条世德发布了新的文献求助10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770344
求助须知:如何正确求助?哪些是违规求助? 3315417
关于积分的说明 10176088
捐赠科研通 3030394
什么是DOI,文献DOI怎么找? 1662898
邀请新用户注册赠送积分活动 795217
科研通“疑难数据库(出版商)”最低求助积分说明 756612