亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developmental validation of a microRNA panel using quadratic discriminant analysis for the classification of seven forensically relevant body fluids

精液 唾液 尿 人口 生物 二次分类器 粪便 体液 医学 内科学 遗传学 内分泌学 人工智能 计算机科学 微生物学 环境卫生 支持向量机
作者
Ciara Rhodes,Carolyn J. Ewers Lewis,Jennifer Szekely,Annabelle Campbell,Mary-Randall A. Creighton,Edward L. Boone,Sarah J. Seashols-Williams
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:59: 102692-102692 被引量:3
标识
DOI:10.1016/j.fsigen.2022.102692
摘要

Body fluid identification is an important step in the forensic DNA workflow, and more advanced methods, such as microRNA (miRNA) analysis, have been research topics within the community over the last few decades. We previously reported a reverse transcription-quantitative PCR (RT-qPCR) panel of eight miRNAs that could classify blood, menstrual secretions, feces, urine, saliva, semen, and vaginal secretions through analysis of differential gene expression. The purpose of this project was to evaluate this panel in a larger population size, develop a more statistically robust analysis method and perform a series of developmental validation studies. Each of the eight miRNA markers was analyzed in > 40 donors each of blood, menstrual secretions, feces, urine, saliva, semen, and vaginal secretions. A 10-fold cross-validated quadratic discriminant analysis (QDA) model yielded the highest classification accuracy of 93% after eliminating miR-26b and miR-1246 from the panel. Accuracy of body fluid predictions was between 84% and 100% when various population demographics and samples from the same donor over multiple time periods were evaluated, but the assay demonstrated limited scope and reduced accuracy when mixed body fluid samples were tested. Limit of detection was found to be less than 104 copies/µL across multiple commercially available RT-qPCR analysis methods. These data suggest that miR-200b, miR-320c, miR-10b, and miR-891a, when normalized to let-7 g and let-7i, can consistently and robustly classify blood, feces and urine, but additional work is important to improve classification of saliva, semen, and female intimate secretions before implementation in forensic casework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lan完成签到,获得积分10
4秒前
陈同学完成签到 ,获得积分10
8秒前
lan发布了新的文献求助10
8秒前
chen完成签到 ,获得积分10
19秒前
sci2025opt完成签到 ,获得积分10
23秒前
siv完成签到,获得积分10
45秒前
科研通AI6应助懦弱的丹秋采纳,获得10
53秒前
科研兵发布了新的文献求助10
59秒前
天天快乐应助shee采纳,获得10
1分钟前
搜集达人应助科研兵采纳,获得10
1分钟前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
8分钟前
阔达白凡完成签到,获得积分10
8分钟前
桥西小河完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827