Incentivizing Semisupervised Vehicular Federated Learning: A Multidimensional Contract Approach With Bounded Rationality

计算机科学 有界函数 理性 机器学习 人工智能 有限理性 理论计算机科学 数学 政治学 法学 数学分析
作者
Dongdong Ye,Xumin Huang,Yuan Wu,Rong Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (19): 18573-18588 被引量:14
标识
DOI:10.1109/jiot.2022.3161551
摘要

To facilitate the implementation of deep learning-based vehicular applications, vehicular federated learning is introduced by integrating vehicular edge computing with the newly emerged federated learning technology. In vehicular federated learning, it is widely considered that the raw data collected by vehicles have complete ground-truth labels. This, however, is not realistic and inconsistent with the current applications. To deal with the above dilemma, a semisupervised vehicular federated learning (Semi-VFL) framework is proposed. In the framework, each vehicular client uses labeled data shared by an application provider, and its own unlabeled data to cooperatively update a global deep neural network model. Furthermore, the application provider combines the multidimensional contract theory with prospect theory (PT) to design an incentive mechanism to stimulate appropriate vehicular clients to participate in Semi-VFL. Multidimensional contract theory is used to deal with the information asymmetry scenario where the application provider is not aware of vehicular clients' 3-D cost information, while PT is used to model the application provider's risk-aware behavior and make the incentive mechanism more acceptable in practice. After that, a closed-form solution for the optimal contract items under PT is derived. We present the real-world experimental results to demonstrate that Semi-VFL achieves the advantages in both the test accuracy and convergence speed, in comparison with existing baseline schemes. Based on the experimental results, we further perform the simulations to verify that our incentive mechanism is efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luca发布了新的文献求助30
刚刚
传奇3应助YXY采纳,获得10
1秒前
丽莉完成签到,获得积分20
1秒前
大力的贞发布了新的文献求助10
1秒前
bkagyin应助爱撞墙的猫采纳,获得10
2秒前
奋斗尔安应助陌路孤星采纳,获得10
2秒前
困困咪应助悦耳的芷荷采纳,获得10
2秒前
科研通AI2S应助可爱可兰采纳,获得10
2秒前
3秒前
3秒前
无限的忆山完成签到,获得积分10
3秒前
傲娇梦旋完成签到,获得积分20
4秒前
丽莉发布了新的文献求助10
4秒前
ing发布了新的文献求助10
4秒前
小糖完成签到 ,获得积分10
4秒前
5秒前
5秒前
友好的尔容完成签到,获得积分10
5秒前
二月why发布了新的文献求助10
5秒前
lily完成签到,获得积分10
5秒前
ido完成签到,获得积分10
5秒前
海底大章鱼完成签到,获得积分10
6秒前
传奇3应助ljie采纳,获得10
6秒前
范天问完成签到,获得积分10
6秒前
6秒前
倒霉兔子完成签到,获得积分0
8秒前
乔小治发布了新的文献求助10
8秒前
8秒前
司空豁应助木子青山采纳,获得10
9秒前
9秒前
温暖芷卉完成签到,获得积分10
9秒前
成就秋烟完成签到,获得积分10
9秒前
彤快乐发布了新的文献求助10
10秒前
娜娜子欧完成签到,获得积分10
10秒前
皛皛完成签到 ,获得积分10
10秒前
青鱼完成签到,获得积分10
10秒前
11秒前
fiammazeng应助a初心不变采纳,获得10
11秒前
xiaxianong发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299089
求助须知:如何正确求助?哪些是违规求助? 2934118
关于积分的说明 8467235
捐赠科研通 2607521
什么是DOI,文献DOI怎么找? 1423776
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645336