Incentivizing Semisupervised Vehicular Federated Learning: A Multidimensional Contract Approach With Bounded Rationality

计算机科学 激励 原始数据 激励相容性 困境 趋同(经济学) 机器学习 人工智能 有限理性 契约论 基线(sea) 哲学 海洋学 新古典经济学 认识论 地质学 微观经济学 经济 程序设计语言 经济增长
作者
Dongdong Ye,Xumin Huang,Yuan Wu,Rong Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (19): 18573-18588 被引量:15
标识
DOI:10.1109/jiot.2022.3161551
摘要

To facilitate the implementation of deep learning-based vehicular applications, vehicular federated learning is introduced by integrating vehicular edge computing with the newly emerged federated learning technology. In vehicular federated learning, it is widely considered that the raw data collected by vehicles have complete ground-truth labels. This, however, is not realistic and inconsistent with the current applications. To deal with the above dilemma, a semisupervised vehicular federated learning (Semi-VFL) framework is proposed. In the framework, each vehicular client uses labeled data shared by an application provider, and its own unlabeled data to cooperatively update a global deep neural network model. Furthermore, the application provider combines the multidimensional contract theory with prospect theory (PT) to design an incentive mechanism to stimulate appropriate vehicular clients to participate in Semi-VFL. Multidimensional contract theory is used to deal with the information asymmetry scenario where the application provider is not aware of vehicular clients' 3-D cost information, while PT is used to model the application provider's risk-aware behavior and make the incentive mechanism more acceptable in practice. After that, a closed-form solution for the optimal contract items under PT is derived. We present the real-world experimental results to demonstrate that Semi-VFL achieves the advantages in both the test accuracy and convergence speed, in comparison with existing baseline schemes. Based on the experimental results, we further perform the simulations to verify that our incentive mechanism is efficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小熊发布了新的文献求助10
1秒前
Dr.Yang完成签到,获得积分10
1秒前
曾真真幸运完成签到,获得积分10
3秒前
zzy发布了新的文献求助10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
风清扬发布了新的文献求助10
6秒前
along完成签到,获得积分10
6秒前
6秒前
6秒前
liuguanfeng完成签到,获得积分10
7秒前
8秒前
ALmighty完成签到,获得积分10
9秒前
zzzqqq完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
cheng_jue完成签到 ,获得积分10
11秒前
coco发布了新的文献求助30
13秒前
13秒前
Ree完成签到,获得积分20
13秒前
研友_VZG7GZ应助zjcbk985采纳,获得10
14秒前
15秒前
15秒前
Ree发布了新的文献求助10
17秒前
威龙觉醒发布了新的文献求助10
17秒前
滟滟发布了新的文献求助10
17秒前
xiuuu发布了新的文献求助10
20秒前
风清扬发布了新的文献求助10
21秒前
上官若男应助热心的血茗采纳,获得10
23秒前
Lucas应助丰富的南松采纳,获得10
26秒前
hyacinth11111完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565910
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693820
捐赠科研通 4592971
什么是DOI,文献DOI怎么找? 2519822
邀请新用户注册赠送积分活动 1492187
关于科研通互助平台的介绍 1463382