葡萄糖酸
材料科学
咖啡因
葡萄糖氧化酶
检出限
拉曼散射
纳米技术
化学
生物传感器
拉曼光谱
生物化学
色谱法
医学
光学
物理
内分泌学
作者
Xinyu Wang,Zhaoping Xia,Essy Kouadio Fodjo,Wei Deng,Dan Li
摘要
Accurate, sensitive and selective detection of metabolic biomarkers in biofluids are of vital significance for health self-monitoring and chronic disease prevention. Here, for the first time, a smart dual-responsive nanozyme sensor (DNS) was developed for simultaneous analysis of glucose and caffeine utilizing stimuli-responsive yolk-shell gold nanoparticles (GNPs)-embedded MIL-53 (Al) (GNPs@MIL-53) structures. After the introduction of glucose, GNPs@MIL-53 displays excellent glucose oxidase (GOx)-like activity to induce the conversion of glucose to gluconic acid and H2O2. H2O2 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) with the generation a bright-blue color, enabling in-field visualization and surface enhanced Raman scattering (SERS) detection of glucose. Upon the addition of caffeine, 2-aminoterephthalic acid modified MIL-53 can react with the caffeine to form intermolecular hydrogen-bonded complexes, leading to strong cyan fluorescence and significant Raman enhancements. The DNS with multi-channel signal outputs can simultaneously determine glucose and caffeine at concentrations of as low as 3 × 10-8 M and 1.2 × 10-11 M, respectively. Importantly, the DNS-based analytical system not only enables visual discrimination and accurate assay of glucose and caffeine in biofluids, but also exhibits negligible cross-interference between glucose and caffeine determination. The combined characteristics of high selectivity, enhanced accuracy and superior quantitative performance make our platform suitable for the point-of-care monitoring of chronic-disease-related metabolic biomarkers.
科研通智能强力驱动
Strongly Powered by AbleSci AI