Two-Way Feature Extraction for Speech Emotion Recognition Using Deep Learning

计算机科学 光谱图 人工智能 特征提取 人工神经网络 模式识别(心理学) 语音识别 深度学习 主成分分析 渲染(计算机图形) 特征(语言学) 情绪识别 机器学习 语言学 哲学
作者
Apeksha Aggarwal,Akshat Srivastava,Ajay Agarwal,Nidhi Chahal,Dilbag Singh,Abeer Ali Alnuaim,Aseel Alhadlaq,Heung-No Lee
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (6): 2378-2378 被引量:37
标识
DOI:10.3390/s22062378
摘要

Recognizing human emotions by machines is a complex task. Deep learning models attempt to automate this process by rendering machines to exhibit learning capabilities. However, identifying human emotions from speech with good performance is still challenging. With the advent of deep learning algorithms, this problem has been addressed recently. However, most research work in the past focused on feature extraction as only one method for training. In this research, we have explored two different methods of extracting features to address effective speech emotion recognition. Initially, two-way feature extraction is proposed by utilizing super convergence to extract two sets of potential features from the speech data. For the first set of features, principal component analysis (PCA) is applied to obtain the first feature set. Thereafter, a deep neural network (DNN) with dense and dropout layers is implemented. In the second approach, mel-spectrogram images are extracted from audio files, and the 2D images are given as input to the pre-trained VGG-16 model. Extensive experiments and an in-depth comparative analysis over both the feature extraction methods with multiple algorithms and over two datasets are performed in this work. The RAVDESS dataset provided significantly better accuracy than using numeric features on a DNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欣慰寄风发布了新的文献求助10
刚刚
1秒前
明亮灭绝完成签到,获得积分10
1秒前
虫子发布了新的文献求助10
1秒前
研友_nvebxL发布了新的文献求助10
1秒前
Geng发布了新的文献求助100
1秒前
ysssbq完成签到,获得积分10
2秒前
科研通AI5应助王大禹采纳,获得10
2秒前
善学以致用应助此晴可待采纳,获得10
2秒前
Cody发布了新的文献求助10
2秒前
充电宝应助懒羊羊采纳,获得10
2秒前
谁家的花花完成签到,获得积分10
2秒前
开朗安双完成签到,获得积分10
3秒前
4秒前
mkl完成签到,获得积分20
4秒前
keroro发布了新的文献求助10
5秒前
小橙同学完成签到 ,获得积分10
6秒前
所所应助Very采纳,获得10
6秒前
明理黎云完成签到 ,获得积分10
6秒前
sky发布了新的文献求助10
6秒前
丫丫完成签到,获得积分20
7秒前
爆米花应助Cody采纳,获得10
7秒前
小心完成签到,获得积分10
7秒前
cdercder应助wdlc采纳,获得20
7秒前
8秒前
susu驳回了bewh应助
8秒前
ZHY完成签到,获得积分10
9秒前
9秒前
yibiy完成签到,获得积分10
10秒前
10秒前
10秒前
阿O完成签到,获得积分10
10秒前
11秒前
11秒前
共享精神应助woshiwuziq采纳,获得20
12秒前
dongqi完成签到,获得积分10
12秒前
Cody应助文件撤销了驳回
12秒前
隐形曼青应助欣慰寄风采纳,获得10
13秒前
TTT发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747963
求助须知:如何正确求助?哪些是违规求助? 3290830
关于积分的说明 10071227
捐赠科研通 3006723
什么是DOI,文献DOI怎么找? 1651273
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751630