Systematic Review of Deep Learning and Machine Learning for Building Energy

稳健性(进化) 支持向量机 计算机科学 机器学习 人工智能 集成学习 集合预报 能源消耗 数据挖掘 工程类 生物化学 基因 电气工程 化学
作者
Sina Ardabili,Leila Abdolalizadeh,Csaba Makó,Bernat Torok,Amir Mosavi
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:10 被引量:14
标识
DOI:10.3389/fenrg.2022.786027
摘要

The building energy (BE) management has an essential role in urban sustainability and smart cities. Recently, the novel data science and data-driven technologies have shown significant progress in analyzing the energy consumption and energy demand data sets for a smarter energy management. The machine learning (ML) and deep learning (DL) methods and applications, in particular, have been promising for the advancement of the accurate and high-performance energy models. The present study provides a comprehensive review of ML and DL-based techniques applied for handling BE systems, and it further evaluates the performance of these techniques. Through a systematic review and a comprehensive taxonomy, the advances of ML and DL-based techniques are carefully investigated, and the promising models are introduced. According to the results obtained for energy demand forecasting, the hybrid and ensemble methods are located in high robustness range, SVM-based methods are located in good robustness limitation, ANN-based methods are located in medium robustness limitation and linear regression models are located in low robustness limitations. On the other hand, for energy consumption forecasting, DL-based, hybrid, and ensemble-based models provided the highest robustness score. ANN, SVM, and single ML models provided good and medium robustness and LR-based models provided the lower robustness score. In addition, for energy load forecasting, LR-based models provided the lower robustness score. The hybrid and ensemble-based models provided a higher robustness score. The DL-based and SVM-based techniques provided a good robustness score and ANN-based techniques provided a medium robustness score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪山飞狐完成签到,获得积分10
1秒前
lucy4472完成签到,获得积分10
3秒前
冯万里完成签到 ,获得积分10
3秒前
4秒前
4秒前
allshestar完成签到 ,获得积分10
5秒前
赵亮完成签到 ,获得积分10
5秒前
懵懂的依秋完成签到 ,获得积分10
6秒前
swiftie完成签到,获得积分10
6秒前
李晓发布了新的文献求助10
7秒前
华仔应助凶狠的海菡采纳,获得10
7秒前
8秒前
耶耶发布了新的文献求助10
8秒前
1257应助Vera123采纳,获得10
9秒前
皮卡超完成签到,获得积分10
9秒前
qausyh发布了新的文献求助10
10秒前
大模型应助XiangW采纳,获得10
11秒前
终醒发布了新的文献求助10
11秒前
葛擎苍发布了新的文献求助10
11秒前
斯文败类应助欢欢采纳,获得10
14秒前
小马甲应助Mrmiss666采纳,获得10
14秒前
凶狠的海菡完成签到,获得积分20
14秒前
周周完成签到 ,获得积分10
15秒前
18秒前
Akim应助司空勒采纳,获得10
19秒前
19秒前
十七发布了新的文献求助10
20秒前
dilli完成签到 ,获得积分10
20秒前
ding应助CYT采纳,获得10
20秒前
20秒前
1257应助1DDDDD采纳,获得10
21秒前
ahaaa完成签到 ,获得积分10
21秒前
22秒前
划分完成签到,获得积分10
22秒前
22秒前
科大鲨鱼发布了新的文献求助10
25秒前
cccyyb完成签到,获得积分10
26秒前
nailuo发布了新的文献求助10
26秒前
26秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3093612
求助须知:如何正确求助?哪些是违规求助? 2745603
关于积分的说明 7586311
捐赠科研通 2396886
什么是DOI,文献DOI怎么找? 1271466
科研通“疑难数据库(出版商)”最低求助积分说明 615182
版权声明 598844