Systematic Review of Deep Learning and Machine Learning for Building Energy

稳健性(进化) 支持向量机 计算机科学 机器学习 人工智能 集成学习 集合预报 能源消耗 数据挖掘 工程类 生物化学 基因 电气工程 化学
作者
Sina Ardabili,Leila Abdolalizadeh,Csaba Makó,Bernat Torok,Amir Mosavi
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:10 被引量:14
标识
DOI:10.3389/fenrg.2022.786027
摘要

The building energy (BE) management has an essential role in urban sustainability and smart cities. Recently, the novel data science and data-driven technologies have shown significant progress in analyzing the energy consumption and energy demand data sets for a smarter energy management. The machine learning (ML) and deep learning (DL) methods and applications, in particular, have been promising for the advancement of the accurate and high-performance energy models. The present study provides a comprehensive review of ML and DL-based techniques applied for handling BE systems, and it further evaluates the performance of these techniques. Through a systematic review and a comprehensive taxonomy, the advances of ML and DL-based techniques are carefully investigated, and the promising models are introduced. According to the results obtained for energy demand forecasting, the hybrid and ensemble methods are located in high robustness range, SVM-based methods are located in good robustness limitation, ANN-based methods are located in medium robustness limitation and linear regression models are located in low robustness limitations. On the other hand, for energy consumption forecasting, DL-based, hybrid, and ensemble-based models provided the highest robustness score. ANN, SVM, and single ML models provided good and medium robustness and LR-based models provided the lower robustness score. In addition, for energy load forecasting, LR-based models provided the lower robustness score. The hybrid and ensemble-based models provided a higher robustness score. The DL-based and SVM-based techniques provided a good robustness score and ANN-based techniques provided a medium robustness score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助APP采纳,获得10
刚刚
小马甲应助茹茹采纳,获得10
1秒前
1秒前
Layli发布了新的文献求助10
1秒前
tommyhechina完成签到,获得积分10
2秒前
华仔应助知性的书竹采纳,获得10
2秒前
美好斓发布了新的文献求助30
3秒前
3秒前
曲书文完成签到,获得积分10
3秒前
仁爱发卡发布了新的文献求助10
4秒前
7t1n9发布了新的文献求助10
4秒前
5秒前
5秒前
刻苦千琴完成签到,获得积分10
5秒前
5秒前
CC完成签到,获得积分20
5秒前
李健应助孤独靖柏采纳,获得10
6秒前
7秒前
Emma应助zxc采纳,获得10
7秒前
alexyang发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
nxxxxxxxxxx发布了新的文献求助10
8秒前
1694315877完成签到,获得积分10
8秒前
8秒前
8秒前
辛勤代梅发布了新的文献求助10
9秒前
10秒前
放放关注了科研通微信公众号
10秒前
笑哈哈发布了新的文献求助10
10秒前
11秒前
顾矜应助卜卜大王采纳,获得10
11秒前
QIUCQ发布了新的文献求助10
11秒前
美好乐松应助7t1n9采纳,获得10
12秒前
12秒前
早睡早起发布了新的文献求助10
12秒前
汉堡包应助charles采纳,获得10
12秒前
12秒前
Alicia发布了新的文献求助10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169302
求助须知:如何正确求助?哪些是违规求助? 2820519
关于积分的说明 7931311
捐赠科研通 2480910
什么是DOI,文献DOI怎么找? 1321571
科研通“疑难数据库(出版商)”最低求助积分说明 633287
版权声明 602528