Peripapillary Atrophy Segmentation and Classification Methodologies for Glaucoma Image Detection: A Review

青光眼 失明 人工智能 计算机科学 验光服务 医学 图像处理 分割 眼底(子宫) 眼底摄影 计算机辅助诊断 计算机视觉 眼科 图像(数学) 荧光血管造影 视网膜
作者
Najdavan A. Kako,Adnan Mohsin Abdulazeez
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:18 (11): 1140-1159 被引量:8
标识
DOI:10.2174/1573405618666220308112732
摘要

Information-based image processing and computer vision methods are utilized in several healthcare organizations to diagnose diseases. The irregularities in the visual system are identified over fundus images with a fundus camera. Among ophthalmology diseases, glaucoma is the most common case leading to neurodegenerative illness. The unsuitable fluid pressure inside the eye within the visual system is described as the major cause of those diseases. Glaucoma has no symptoms in the early stages, and if it is not treated, it may result in total blindness. Diagnosing glaucoma at an early stage may prevent permanent blindness. Manual inspection of the human eye may be a solution, but it depends on the skills of the individuals involved. The diagnosis of glaucoma by applying a consolidation of computer vision, artificial intelligence, and image processing can aid in the prevention and detection of those diseases. In this review article, we aim to introduce numerous approaches based on peripapillary atrophy segmentation and classification that can detect these diseases, as well as details regarding the publicly available image benchmarks, datasets, and measurement of performance. The review article highlights the research carried out on numerous available study models that objectively diagnose glaucoma via peripapillary atrophy from the lowest level of feature extraction to the current direction based on deep learning. The advantages and disadvantages of each method are addressed in detail, and tabular descriptions are included to highlight the results of each category. Moreover, the frameworks of each approach and fundus image datasets are provided. Our study would help in providing possible future work directions to diagnose glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西伯利亚彪悍前妻完成签到 ,获得积分10
刚刚
刚刚
CipherSage应助甜甜采纳,获得30
3秒前
annicaker完成签到,获得积分10
3秒前
英俊的铭应助聪聪采纳,获得20
4秒前
4秒前
研友_VZG7GZ应助紫易采纳,获得30
4秒前
zzy发布了新的文献求助10
6秒前
晶坚强完成签到,获得积分10
6秒前
7秒前
Xin完成签到,获得积分10
7秒前
FashionBoy应助科研猫采纳,获得10
8秒前
10秒前
choubao完成签到,获得积分20
11秒前
田様应助leo_twli采纳,获得10
11秒前
甜甜完成签到,获得积分10
12秒前
没有逗完成签到,获得积分10
12秒前
帕克发布了新的文献求助10
14秒前
smile~发布了新的文献求助10
15秒前
茜134完成签到,获得积分10
15秒前
15秒前
周凡淇发布了新的文献求助10
15秒前
优秀的往事完成签到,获得积分10
16秒前
善学以致用应助米老鼠de采纳,获得10
17秒前
深情的一曲完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
19秒前
congjia完成签到,获得积分10
19秒前
小蘑菇应助小可爱采纳,获得10
20秒前
凌忆文完成签到 ,获得积分0
21秒前
打打应助白天亮采纳,获得10
21秒前
21秒前
苏苏阿苏完成签到,获得积分10
22秒前
22秒前
yoga发布了新的文献求助10
23秒前
西西发布了新的文献求助10
24秒前
无足鸟应助研友_Z1eelZ采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323