亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials

带隙 计算机科学 钙钛矿(结构) 非线性系统 人工智能 材料科学 Boosting(机器学习) 机器学习 卤化物 决策树 梯度升压 算法 物理 光电子学 工程类 量子力学 随机森林 无机化学 化学工程 化学
作者
Ruoting Zhao,Bangyu Xing,Huimin Mu,Yuhao Fu,Lijun Zhang
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:31 (5): 056302-056302 被引量:8
标识
DOI:10.1088/1674-1056/ac5d2d
摘要

With the rapid development of artificial intelligence and machine learning (ML) methods, materials science is rapidly entering the era of data-driven materials informatics. ML models serve as the most crucial component, closely bridging material structure and material properties. There is a considerable difference in the prediction performance of different ML methods for material systems. Herein, we evaluated three categories (linear, kernel, and nonlinear methods) of models, with twelve ML algorithms commonly used in the materials field. In addition, halide perovskite was chosen as an example to evaluate the fitting performance of different models. We constructed a total dataset of 540 halide perovskites and 72 features, with formation energy and bandgap as target properties. We found that different categories of ML models show similar trends for different target properties. Among them, the difference between the models is enormous for the formation energy, with the coefficient of determination ( R 2 ) range 0.69–0.953. The fitting performance between the models is closer for bandgap, with the R 2 range 0.941–0.997. The nonlinear-ensemble model shows the best fitting performance for both the formation energy and the bandgap. It shows that the nonlinear-ensemble model, constructed by combining multiple weak learners, effectively describes the nonlinear relationship between material features and target property. In addition, the extreme gradient boosting decision tree model shows the most superior results among all the models and searches for two new descriptors that are crucial for formation energy and bandgap. Our work provides useful guidance for the selection of effective machine learning methods in the data-mining studies of specific material systems. The dataset that supported the findings of this study is available in Science Data Bank, with the link https://www.doi.org/10.11922/sciencedb.01611 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
打打应助沉静晓啸采纳,获得10
21秒前
22秒前
研友_89Nm7L发布了新的文献求助10
25秒前
研友_89Nm7L完成签到,获得积分10
32秒前
lingling完成签到 ,获得积分10
43秒前
47秒前
48秒前
kkk完成签到 ,获得积分10
50秒前
50秒前
佛见笑关注了科研通微信公众号
52秒前
沉静晓啸发布了新的文献求助10
52秒前
lhr发布了新的文献求助10
54秒前
fuhua发布了新的文献求助10
57秒前
FashionBoy应助wuxiaojiao采纳,获得10
57秒前
佛见笑发布了新的文献求助50
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
kabosu应助111采纳,获得10
1分钟前
lhr完成签到,获得积分10
1分钟前
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
wangdong应助111采纳,获得10
1分钟前
kabosu应助111采纳,获得10
1分钟前
科研通AI2S应助111采纳,获得10
1分钟前
领导范儿应助111采纳,获得10
1分钟前
汉堡包应助111采纳,获得10
1分钟前
无花果应助111采纳,获得10
1分钟前
田様应助111采纳,获得10
1分钟前
wuxiaojiao发布了新的文献求助10
1分钟前
完美世界应助111采纳,获得10
1分钟前
大个应助111采纳,获得10
1分钟前
星辰大海应助111采纳,获得10
1分钟前
上官若男应助111采纳,获得10
1分钟前
在水一方应助111采纳,获得10
1分钟前
wangdong应助111采纳,获得10
1分钟前
大模型应助111采纳,获得10
1分钟前
深情安青应助111采纳,获得10
1分钟前
顾矜应助111采纳,获得10
1分钟前
ding应助111采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228107
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760497
科研通“疑难数据库(出版商)”最低求助积分说明 735991