Glutathione peroxidase (GPX) is a crucial enzyme in the antioxidant defense system. However, the previous studies on the structure and functions of mollusk GPX genes are still very limited. Here, we investigated the GPX gene from Sinonovacula constricta (Sc-GPX), and its expression profiles, protein localization, gene function and association with ammonia tolerance. The full length of sequence of Sc-GPX was 1781 bp, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Quantitative expression of seven adult tissues showed that Sc-GPX was most abundant in hepatopancreas, followed by gills. Furthermore, the enzyme activity of Sc-GPX in hepatopancreas increased significantly under different ammonia concentrations (100, 140, and 180 mg/L) (P < 0.01). Further, we explored the mRNA expression level, histological structure and histo-cellular localization in gills and hepatopancreas of Sc-GPX under 140 mg/L ammonia stress. The mRNA expression level in gills and hepatopancreas of Sc-GPX increased significantly (P < 0.05) and immunohistochemistry results suggested that the columnar cells of gills filaments and the endothelial cells of hepatopancreas were the major sites for the action of Sc-GPX protein. In addition, we performed western blotting (WB), RNA interference (RNAi) and single nucleotide polymorphisms (SNPs) in the hepatopancreas of Sc-GPX under ammonia stress (140 mg/L). WB results indicated that the protein expression of Sc-GPX increased significantly (P < 0.01) after ammonia challenge. In addition, expression of Sc-GPX mRNA were significantly downregulated at 24 and 48 h after RNAi (P < 0.01). The association analysis between ammonia-tolerance group and control group identified six SNPs in coding sequence (CDS) of Sc-GPX from 449 individuals. Among them, c.162A > C was missense mutation, which lead to the amino acid change from Lys to Asn. These findings revealed that Sc-GPX may play a critical role in clam ammonia detoxification.