Interface engineering of ZnO/In2O3 Z-scheme heterojunction with yolk-shell structure for efficient photocatalytic hydrogen evolution

光催化 异质结 奥斯特瓦尔德成熟 材料科学 化学工程 纳米技术 纳米颗粒 制氢 热液循环 化学 光电子学 催化作用 有机化学 生物化学 工程类
作者
Yinli Duan,Juanqin Xue,Jianan Dai,Yaru Wei,Chao Wu,Sheng-Yuan Chang,Jing Ma
出处
期刊:Applied Surface Science [Elsevier]
卷期号:592: 153306-153306 被引量:19
标识
DOI:10.1016/j.apsusc.2022.153306
摘要

Photocatalytic activities based on charge transfer and separation at interfaces can be effectively promoted by matching chemical Z-scheme heterojunctions and electronic structures. However, the fabrication of morphology-controlled heterojunctions has been a challenge to many researchers. Herein, hollow spheres ZnO/In2O3 was constructed via hydrothermal strategy by fine-tuning the concentration of metal nitrate precursors, and special yolk-shell morphology was generated by the symmetrical Ostwald ripening process. The fabricated Z-Scheme heterojunction exhibited characteristic multi-channel charge transfer properties, which favors the spatial separation of carriers. The ZnO/In2O3 hollow spheres increased the utilization of light source, and the yolk-shell structure increased the interface area and the active sites. Benefiting from the synergistic effect, the ZnO/In2O3 exhibited excellent photocatalytic activities for H2 production, which was comparatively 26.7 times that obtained using ZnO nanoparticles. From calculations based on DFT, the Z-scheme photogenerated charge transfer mechanism was proposed. The proposed mechanism was verified by analyzing the chemical properties (surface) and the •O2− and •OH free radical concentrations before and after the photoreaction. The mechanism presented the ZnO/In2O3 with strong capabilities for H2 production and elucidated the improved photocatalytic performances. This work creates an innovative route for constructing Z-scheme photocatalytic systems with great photocatalytic activities for H2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dktrrrr完成签到,获得积分10
1秒前
季生完成签到,获得积分10
4秒前
徐徐完成签到,获得积分10
4秒前
5秒前
5秒前
haku完成签到,获得积分10
7秒前
可爱的函函应助laodie采纳,获得10
9秒前
Singularity应助忆楠采纳,获得10
10秒前
11秒前
请叫我风吹麦浪应助PengHu采纳,获得30
12秒前
jjjjjj完成签到,获得积分10
12秒前
凝子老师发布了新的文献求助10
14秒前
14秒前
橙子fy16_发布了新的文献求助10
16秒前
cookie完成签到,获得积分10
16秒前
柒柒的小熊完成签到,获得积分10
17秒前
17秒前
Hello应助萌之痴痴采纳,获得10
18秒前
hahaer完成签到,获得积分10
20秒前
领导范儿应助失眠虔纹采纳,获得10
21秒前
22秒前
Owen应助凝子老师采纳,获得10
25秒前
25秒前
南宫炽滔完成签到 ,获得积分10
27秒前
27秒前
丘比特应助飞羽采纳,获得10
28秒前
沙拉发布了新的文献求助10
28秒前
29秒前
30秒前
椰子糖完成签到 ,获得积分10
31秒前
31秒前
ZHU完成签到,获得积分10
32秒前
阳阳发布了新的文献求助10
33秒前
Raymond应助雪山飞龙采纳,获得10
33秒前
kk发布了新的文献求助10
34秒前
34秒前
35秒前
35秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849